1.058 Quantifying uncertainties in multi-pollutants health impacts in urban/rural regions across the UK.

Early Career Scientist

Presenting Author:

Sara Fenech, School of GeoSciences, University of Edinburgh, s1473248@sms.ed.ac.uk

Co-Authors:

Ruth Doherty, School of GeoSciences, University of Edinburgh Clare Heaviside, Air Pollution and Climate Change Group Public Health England Sotiris Vardoulakis, Air Pollution and Climate Change Group Public Health England

Fiona O'Connor, Met Office

Abstract:

The adverse impacts of air pollution on human health due to exposure to ozone (O_3) , and $PM_{2.5}$ are well established. However, there are numerous uncertainties in quantifying region-wide health impacts e.g. due to uncertainties in simulating urban air pollutant concentrations and for coefficients that determine exposure-response relationships. Previous studies using chemical transport model simulations outline the importance of model resolution for simulating O_3 concentrations to be used in health impacts studies. However there are very few studies that discuss the effects of uncertainty in model resolution for determining PM-related health impacts. In this study we have used the UK chemistry and aerosol (UKCA) model to quantify the impact of model resolution and uncertainty in concentration-response coefficients on simulated pollutant concentrations and associated health impacts.

Two model configurations were used: a global resolution (~ 150 km) and a regional resolution (~ 50 km) over Europe. Our regional configuration shows similar results to previous studies for O_3 concentrations, in particular better agreement with measurements for the diurnal cycle for O_3 compared to global model results. In addition, the regional simulation better captures the lower O_3 levels associated with high NO_X levels in large cities (due to higher emission resolution). In contrast, differences in model performance for $PM_{2.5}$ for the two resolutions are not as evident. However the regional configuration gives a better representation of hotspots whereas the global configuration underestimates high $PM_{2.5}$ levels. These results are being linked to population and baseline mortality data to predict uncertainty ranges for $PM_{2.5}$ health impacts over Europe due to long-term exposure.

UKCA simulations at the local scale (~ 12 km) will also be utilised to assess health impacts due to $PM_{2.5}$ episodes across the UK. Future work will consider how health burdens will change in urban areas due to higher population density and climate change.