1.165 An estimation of NOx emissions from OMI-observed NO2 columns over East Asia.

Presenting Author:

Kyung Man HAN, Gwangju Institute of Science and Technology, School of Earth Science and Environmental Engineering, Gwangju, South Korea, kmhan@gist.ac.kr

Co-Authors:

Chul Han SONG, Gwangju Institute of Science and Technology, School of Earth Science and Environmental Engineering, Gwangju, South Korea
Sojin Lee, Gwangju Institute of Science and Technology, School of Earth Science and Environmental Engineering, Gwangju, South Korea
Da Som Lee, Gwangju Institute of Science and Technology, School of Earth Science and Environmental Engineering, Gwangju, South Korea

Abstract:

For the high-resolved (i.e., 30km x 30km) top-down NO_x emissions, an algorithm was developed based on the mass balance equation. Two main parameters were incorporated in the algorithm. For the first, atmospheric NO_X molecules transported from/to the adjacent cells for the considering the non-local sources were sophisticatedly calculated. For the second, effective NO_x lifetime for the nonlinearity between NO_2 columns and NO_x emissions was estimated. In our analysis, the NO_x transports from/to the neighborhood cells had significant impacts on the effective NO_x lifetime in both cold and warm seasons. Also, in our sensitivity test, we showed that the errors in the top-down NO $_{
m x}$ estimations can be reduced by filtering the data whose NO_x lifetimes are smaller than 5 hours. The relative errors caused by the uncertain issues of NO_x lifetimes with interpolation of satellite data were \sim 13% and \sim 5% in January and July, 2014. Using the algorithm, the topdown NO $_{\rm X}$ emissions were estimated to be 1.04 and 1.18 Tg N /month over our entire domain for January and July, respectively. The values corresponded to decreases by ~15% and ~2%, compared with the bottom-up NO_x emissions in January and July, respectively. We also compared the CMAQ-estimated NO_2 columns with OMI-retrieved NO $_2$ columns to evaluate the bottom-up NO_x emission (i.e., MICS-Asia III) and investigate how much the top-down NO_x emissions estimated from our algorithm were improved.