2.047 Tracking agricultural soil NOx and NH3 emissions variability with novel methodologies .

Early Career Scientist

Presenting Author:

David Miller, Institute at Brown for Environment and Society, Brown University, Providence, RI, USA, david_j_miller@brown.edu

Co-Authors:

Da Pan, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

Sami Overby, Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA

Felix Guo, Department of Chemical Engineering, Brown University, Providence, RI, USA

Curtis Dell, Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA, USA

Stephen Del Grosso, USDA-ARS, Fort Collins, CO, USA

Jim Tang, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA

Mark Zondlo, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

Meredith Hastings, Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA

Abstract:

Agricultural production systems significantly perturb the reactive nitrogen cycle via significant atmospheric nitrogen oxides (NO $_{\rm X}$) and ammonia (NH $_{\rm 3}$) emissions. NO $_{\rm X}$ and NH 3 serve as precursors to ozone and ammonium nitrate aerosols, linking agriculture, air quality, radiative forcing, and ecosystem health. Constraining agricultural NO $_{\rm x}$ and NH $_{\rm 3}$ emissions is critical for closing agro-ecosystem nitrogen budgets. However, fluxes are highly uncertain and lack widespread, high-resolution measurements for capturing spatially heterogeneous soil emission pulses, especially on diurnal timescales. We characterize NO_x and NH_3 fluxes and the nitrogen isotopic composition of NO_x from cropland soils across a variety of representative fertilizer and water management scenarios. A field and laboratory-verified technique for actively capturing NO_x in solution is optimized for hourly resolution soil NO_{χ} isotopic measurements. We evaluate the ability of nitrogen isotopic enrichment factors of NO_{X} emissions relative to inorganic soil nitrogen substrates to distinguish emission processes. We also demonstrate a novel NH3 flux chamber measurement method, using a portable, battery-powered, open-path quantum cascade laser-based NH₃ sensor, that accounts for adsorption losses to chamber surfaces. Ammonia detection from 50 ppbv to 50 ppmv is optimized for a large dynamic range and several minute resolution flux measurements. We present in-situ soil

flux studies with soils and fertilizers representative of a sustainable cropping system of no-till and manure injection in Pennsylvania and an irrigated cropping system with conventional and no-till in Colorado. Continuous diurnal flux measurements are performed to investigate correlations of soil NO_X and NH_3 fluxes with fertilizer application, response to rainfall/irrigation, and diurnal soil temperature variations. Soil surface-applied manure resulted in order of magnitude higher NH_3 fluxes than below surface incorporation. These observations have implications for future agricultural management and mitigation strategies and are applicable for comparisons with field-scale eddy flux observations and validations of satellite NO_2 and NH_3 model inversions in agricultural emission regions.