3.004 The atmospheric response to building a large-scale space-based solar power system.

Presenting Author:

Robert Portmann, NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA, robert.w.portmann@noaa.gov

Co-Authors:

Erik Larson, NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA **Karen Rosenlof**, NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA

David Fahey, NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA

John Daniel, NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA

Abstract:

New rocket technology using hydrogen-burning engines may allow a vast number of relatively low cost flights to space in the near future. One such proposal for this new rocket technology is to build a space based solar power system. It is estimated that 10⁵ flights per year for 10 years could build a space station capable of replacing about 10% of today's global electricity production. The emissions from these flights could pose a potential risk to the climate and stratospheric ozone. The effects of the emissions from these rocket engines are quantified for 10^4 - 10^6 flights per year using the CESM-WACCM climate/chemistry model and the NOCAR two-dimensional model. Water vapor from combustion is the primary emission product, however a substantial amount of NO $_{\rm X}$ is produced in the superheated engine exhaust and upon reentry. A total of 10⁵ flights per year more than doubles the amount of water in the mesosphere and increases the stratospheric water vapor by roughly 10%. This added water vapor increases high altitude clouds at the poles but its effect on ozone is relatively small. The NO_{X} production from spacecraft re-entry is more than an order of magnitude larger than the natural production from meteors and destroys a substantial amount of ozone. At 10⁵ flights per year, a reduction by about 1.5 Dobson units or roughly 0.5% occurs in the column integrated global ozone abundance. The largest losses occur in the polar regions. This is a large perturbation, but much less than at the peak of ozone loss in 1998 when global ozone was diminished by 4% due to anthropogenic emissions.