3.069 Global methane budget and natural gas leakage based on longterm δ13C-CH4 measurements and updated isotopic source signatures.

Early Career Scientist

Presenting Author:

Stefan Schwietzke, NOAA/ESRL/GMD, CU/CIRES, Boulder, CO, USA, stefan.schwietzke@noaa.gov

Co-Authors:

Owen Sherwood, CU/INSTAAR, Boulder, CO, USA Lori Bruhwiler, NOAA/ESRL/GMD, Boulder, CO, USA Pieter Tans, NOAA/ESRL/GMD, Boulder, CO, USA John Miller, NOAA/ESRL/GMD, CU/CIRES, Boulder, CO, USA Giuseppe Etiope, INGV, Rome, Italy Ed Dlugokencky, NOAA/ESRL/GMD, Boulder, CO, USA Sylvia Michel, CU/INSTAAR, Boulder, CO, USA Victoria Arling, NOAA/ESRL/GMD, University of Colorado, Boulder, CO, USA

Abstract:

Quantifying and mitigating CH_{Δ} emissions associated with extraction and use of fossil fuels (natural gas, oil, and coal) has been the focus of many measurement U.S. field campaigns, modeling studies, and policy and industry activities in recent years. While this enhances the information available to better understand the impact of fossil fuels on U.S. CH_{A} emissions, global modeling studies frequently suffer from limited data to attribute total CH₄ emissions to individual sources. We generated isotopic source signature distributions based on the largest literature survey to date to better constrain global fossil fuel CH_A emissions. These are combined with atmospheric measurements from NOAA's Global Greenhouse Gas Reference Network and the literature spanning the past three decades including globally averaged CH_{4} and stable isotopes ($^{13}C_{CH4}$). A Monte Carlo box-model and a global transport model were used to estimate distributions and confidence intervals of individual emissions sources. Attributing the majority of increased CH_{Δ} levels over the past three decades to microbial sources is consistent with $^{13}C_{CH\Delta}$ records. The sum of CH_{Δ} emissions from fossil fuel extraction and use and geological seepage is significantly larger than previous estimates. Finally, recently published estimates of global CH_{Δ} emissions from the oil and coal industries are subtracted from our global fossil fuel CH_{Δ} results to quantify global CH_{Δ} leakage from the natural gas industry during extraction, processing, transport, and distribution. Natural gas CH_{Δ} leakage as a fraction of total production has decreased steadily over the same period indicating industry efficiency improvements.