4.023 Improved analyzer for biogenic volatile organic compounds as total ozone reactivity and its application to kinetics of gasphase reactions.

Presenting Author:

Jun Matsumoto, Faculty of Human Sciences, Waseda University, Japan, jmatsumoto@waseda.jp

Abstract:

Biogenic volatile organic compounds (BVOCs) have been focused on as precursors of tropospheric ozone (O₃) and secondary organic aerosols. Various species of BVOCs have C=C double bonds and can react with O_3 . To capture BVOCs comprehensively, a total ozone reactivity (R_{O3} , the sum of k_i [VOC_i]) analyzer has been developed [1-3]. R_{O3} of sample BVOCs can be determined when decrease of O₃ due to BVOCs+O₃ is precisely monitored. Initial O₃ concentration was set to be 30 ppbv. Cyclohexane was added as an OH scavenger. Detection limit of the prototype analyzer was 1.4×10^{-4} s⁻¹ (S/N=3, 60-s average, 60-s reaction). To apply the analyzer to field observations and/or laboratory studies where precise measurements of O_3 and R_{O3} are essential, further improvement of the analyzer is necessary. In this study, the analyzer was successfully improved through optimization of (1) O₃ detector, (2) O₃ supply, and (3) reaction chamber. The acquired detection limit of R_{O3} was 0.2×10^{-4} s⁻¹. As an application, temperature dependence of rate constant, k(T), for gas-phase reaction of a BVOC with ozone was explored. In this study, linalool, $(CH_3)_2C=CHCH_2CH_2C(CH_3)(OH)CH=CH_2$, was examined. For linalool, k(296K) can be referred as 4.3×10^{-16} cm³molecule⁻¹s⁻¹ [4]. The detection limit of improved R_{O3} analyzer corresponded to 5 ppbv as linalool equivalent. R_{O3} of linalool at 310 K was quantified as 5 % smaller than that at 296 K. k(310K) was estimated as 4.1×10^{-16} cm³molecule⁻¹s⁻¹. Consequently, it was indicated that the rate constant of linalool+O₃ reaction decreased by 5 % when the temperature changed from 296 K to 310 Κ.

[1] Matsumoto, J., AGU Fall Meeting 2011, USA, A51A-0232 (2011).

[2] Matsumoto, J., Aerosol Air Qual. Res., 14, 197-206 (2014).

[3] Matsumoto, J., 1st OH Reactivity Specialists Uniting Meeting, Germany (2014).

[4] Atkinson, R., et al., Int. J. Chem. Kinet., 27, 941-955 (1995).