4.038 Oxidative Potential Evolution of Particulate Trimethylamine during Ozonolysis.

Early Career Scientist

Presenting Author:

yanli ge, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences & College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, xueyan940115@gmail.com

Co-Authors:

yongchun liu, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences & Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China

hong he, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences & Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China

Abstract:

ABSTRACT

Amines in the atmosphere have attracted widespread attention because they contribute to the nitrogen cycle¹, new particle formation²⁻⁴, and brown carbon⁵, as well as having their own inherent toxicity⁶. In this study, the ozonolysis of particulate trimethylamine (TMA), which was produced via heterogeneous uptake of TMA onto $(NH_{d})_{2}SO_{d}$, $NH_{d}HSO_{d}$, NH_4NO_3 and NH_4CI or neutralization of TMA and H_2SO_4 , was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and proton transfer reaction mass spectrometry (PTR-MS). DTT assay tests were performed to assess oxidative potential changes due to O₃ oxidation. Products including HCOOH, HCHO, CH₃ N=CH₂, (CH₃)₂NCHO, CH₃NO₂, CH₃N(OH)CHO, CH₃NHOH and H₂O were identified on all the substrates exposed to ppbv level of O₃. Compared with ammonium and aminium salts, the oxidation potential of particulate aminium after ozone oxidation increased significantly, with a DTT loss rate that increased from $0\pm4.14\times10^{-6}$ to $5.92\pm2.80\times10^{-3}$ pmol·min⁻¹· μ g⁻¹. Our results reveal that the oxidation of particulate amines is a potential degradation pathway for amines in the atmosphere and that the oxidation products in the particle phase are associated with modification of the adverse health impacts of aerosol particles.

REFERENCES

1. Meunier, C. L.; Gundale, M. J.; Sanchez, I. S. et al., *Glob. Change Biol.* **2016**, *22*, (1), 164-179.

2. Almeida, J.; Schobesberger, S.; Kurten, A. et al., Nature **2013**, 502, (7471), 359-363.

3. Smith, J. N.; Barsanti, K. C.; Friedli, H. R. et al., *Proc. Natl. Acad. Sci. USA* **2010**, *107*, (15), 6634-6639.

4. Murphy, S. M.; Sorooshian, A.; Kroll, J. H. et al., *Atmos. Chem. Phys.* **2007**, *7*, (9), 2313-2337.

5. Kourtchev, I.; O'Connor, I. P.; Giorio, C. et al., *Atmos. Environ.* **2014**, *89*, 525-532.

6. Myers, R. C.; Ballantyne, B., Toxic. Subst. Mech. **1997,** *16*, (2), 151-193.