4.039 Heterogeneous reaction of SO2 with soot: the role of the chemical composition of soot in surface sulfates formation.

Early Career Scientist

Presenting Author:

yan zhao, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences & College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, yangxl8611@hotmail.com

Co-Authors:

Yongchun Liu, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences & Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China

hong He, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences & Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China

Abstract:

It has been found that soot can catalyze the oxidation of SO2 to form sulfates in the presence of O_2 and water^{1, 2}. A linear relationship has been observed between NO₂ uptake and the content of reduced organic carbon in soot prepared under different combustion conditions³. However, the effect of the chemical composition of soot on the adsorption or further oxidation of SO₂ on the surface of soot is still poorly understood. In this study, soot samples with different fractions of unsaturated hydrocarbons and oxygen groups were prepared by combusting n-hexane under well-controlled conditions. The heterogeneous reaction of SO₂ with soot at ambient pressure and ambient relative humidity (RH) was investigated using in situ attenuated total internal reflection infrared (ATR-IR) spectroscopy, ion chromatography (IC) and a flow tube reactor. We observed that the surface properties of soot, which were governed by combustion conditions, played an important role in the heterogeneous reaction of SO₂ with soot. This role was found to greatly depend on RH. At low RH, soot produced with high fuel/oxygen ratio exhibited high reactivity toward SO₂, because it contained a large amount of unsaturated hydrocarbons which acted as the active site for SO₂ adsorption. At moderate RH, water and SO₂ both participated in the reaction. Soot produced with moderate fuel/oxygen ratio showed high reactivity toward SO₂, since it contained appropriate amounts of unsaturated hydrocarbons and oxygen groups, which led to optimal surface concentrations of SO₂ and water, respectively.

REFERENCES

1. Novakov, T., Chang, S. G., Harker, A. B., *Science* **1974**, *186*, 259-261.

- 2. Smith, D. M., Keifer, J. R., Novicky, M., et al., *Appl Spectrosc* **1989**, *43*, 103-107.
- 3. Han, C., Liu, Y., He, H., *Environ Sci Technol* **2013**, *47*, 3174-3181.