4.060 Atmospheric Chemistry of E- and Z-CF3CH=CHCF3.

Early Career Scientist

Presenting Author:

Freja F. Oesterstroem, Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, freja.oesterstroem@gmail.com

Co-Authors:

Simone Thirstrup Andersen, Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Ole John Nielsen, Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Abstract:

FTIR smog chamber experiments were performed to investigate the atmospheric fate of E- and Z-CF₃CH=CHCF₃ (1,1,1,4,4,4-hexafluoro-2-butene). The experiments were performed to study reactions of E-CF₃CH=CHCF₃ or Z-CF₃CH=CHCF₃ with Cl atoms, OH radicals, and O₃ in 700 Torr of N₂/O₂ diluents at 296 \pm 2 K. The study determined the Cl atom, OH radical, and O₃ kinetics and the mechanism of the atmospheric oxidation of E- and Z-CF₃CH=CHCF₃. The main atmospheric fate for both compounds is reaction with OH radicals. Atmospheric chemistry of the reaction of Z-CF₃CH=CHCF₃ with OH and OD radicals were investigated by Baasandorj et al. in 2011 [1], no other previous studies are available. The results of the present study are compared to the findings of Baasandorj et al. assessing the atmospheric lifetimes, the radiative forcings and global warming potentials (GWP) of the two butenes were calculated. This study provides a comprehensive description of the atmospheric fate of E- and Z-CF₃CH=CHCF₃. We present here the first results on the atmospheric chemistry of E-CF₃CH=CHCF₃.

References

[1] M. Baasandorj, A.R. Ravishankara, J.B. Burkholder, Atmospheric Chemistry of (Z)-CF₃ CH=CHCF₃: OH Radical Reaction Rate Coefficient and Global Warming Potential, The Journal of Physical Chemistry A 115 (2011) 10539-10549.