4.069 Effects of Ammonia on SOA Formation and Composition .

Early Career Scientist

Presenting Author:

Julia Montoya, Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA, jmontoy3@uci.edu

Co-Authors:

Mallory L. Hinks, Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA

Sergey A. Nizkorodov, Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA

Jeremy R. Horne, Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA

Donald Dabdub, Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA

Abstract:

Particulate matter (PM) is comprised of suspended particles in the atmosphere large enough to diminish visibility or affect temperature by absorbing or scattering light. Secondary organic aerosols (SOA), a major component of PM, are largely formed from the oxidation of volatile organic compounds (VOC). Despite research efforts to understand SOA formation from VOC reactions with oxidants such as OH, O_3 , and NO_x , a large uncertainty remains on how ammonia (NH₃) affects such reactions. NH₃ is widely released from agriculture and other natural and industrial sources. The U.S. Department of Commerce estimates the U.S. produces 9 million metric tons of NH₃ annually rendering it among the top 5 producing countries. This study investigates the effects of ammonia on SOA formation, optical properties, and chemical composition. SOA is formed from the oxidation of anthropogenic- and biogenic-relevant VOCs in a smog chamber at the desired relative humidity. After SOA formation, NH₃ is introduced into the chamber. The particle growth is monitored with a scanning mobility particle sizer (SMPS). A Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is used to track VOCs and a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) is used to analyze particle composition. Subsequently, samples are collected and analyzed via direct analysis in real time mass spectrometry (DART-MS) and electrospray ionization mass spectrometry (ESI-MS). These techniques are used to determine whether NH_3 reacts with SOA to form nitrogen-containing compounds. Additionally, absorption coefficient of SOA extracts is measured. The experimental results from this study will be incorporated into two models: 1) UCI-CIT, an airshed model that contains comprehensive SOA chemistry for the South Coast Air Basin of California and 2) a coupled meteorological-air quality model for continental-scale modeling of the U.S. The combination of experimental and modeling results will allow us to evaluate the impact of NH3 on SOA and ultimately air quality and climate.