6.004 Wintertime Reactive Nitrogen Chemistry During the 2015 WINTER Aircraft Campaign.

Early Career Scientist

Presenting Author:

Erin McDuffie, 1) NOAA ESRL Chemical Sciences Division, Boulder, CO USA, 2) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA, 3) Department of Chemistry, University of Colorado, Boulder CO USA, erin.mcduffie@colorado.edu

Co-Authors:

Dorothy Fibiger, NSF Geospace Sciences Postdoctoral Fellow
William P. Dube, 1) NOAA ESRL Chemical Sciences Division, Boulder, CO USA,
2) Cooperative Institute for Research in Environmental Sciences, University of

Colorado, Boulder, CO USA

Felipe Lopez-Hilfiker, Department of Atmospheric Sciences, University of Washington, Seattle, WA USA

Joel A. Thornton, Department of Atmospheric Sciences, University of Washington, Seattle, WA USA

Viral Shah, Department of Atmospheric Sciences, University of Washington, Seattle, WA USA

Lyatt Jaegle, Department of Atmospheric Sciences, University of Washington, Seattle, WA USA

Amy P. Sullivan, Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA

Hongyu Guo, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA

Rodney J. Weber, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA

Jack E. Dibb, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA

Pedro Campuzano-Jost, 1) Department of Chemistry, University of Colorado, Boulder, CO USA, 2) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA

Jason C. Schroder, 1) Department of Chemistry, University of Colorado, Boulder, CO USA, 2) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA

Jose L. Jimenez, 1) Department of Chemistry, University of Colorado, Boulder, CO USA, 2) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA

Steven S. Brown, 1) NOAA ESRL Chemical Sciences Division, Boulder, CO USA,

2) Department of Chemistry, University of Colorado, Boulder, CO USA

Abstract:

Tropospheric ozone (O₃) is a potent greenhouse gas that degrades regional air quality. Anthropogenic NO_x emissions and chemistry are an important regional O₃ source during midlatitude summer, but may destroy O₃ during winter. The large majority of previous field studies have focused on understanding reactive NO_x-O₃ relationships under summertime conditions. However, there remain outstanding scientific questions regarding the influence of NO_x on wintertime O₃, in part because of the relevant atmospheric chemistry that occurs largely at night, including N₂O₅ multiphase processes. The winter tropospheric O₃ budget depends critically on N₂O₅ production and the efficiency of its subsequent reaction on aerosols to nitric acid (HNO₃) or nitryl chloride (CINO₂). These processes are highly uncertain due in part to the limited database for wintertime atmospheric chemical measurements.

The Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 13 research flights over the eastern US in February and March 2015. A wide variety of environments were sampled during day and overnight flights over continental and marine environments. Reactive nitrogen measurements were collected with a cavity ring down spectrometer, while HNO₃ and CINO₂ were measured with chemical ionization mass spectrometry. Initial analysis of these data has shown that wintertime N₂O₅ mechanisms and reactive nitrogen partitioning are highly variable. Presented here is further analysis aimed at quantifying the observed N₂O₅ aerosol reactive uptake coefficient as a function of different ambient conditions observed during WINTER (e.g. temperature, relative humidity, gas vs. particle phase nitrate and chloride). In addition, a chemical box model is used to assess the chemical and/or environmental factors that influence reactive nitrogen partitioning.