6.032 Variations of atmospheric methane and its carbon and hydrogen isotopic ratios at Churchill, Canada.

Early Career Scientist

Presenting Author:

RYO FUJITA, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan, ryo.fujita.t6@dc.tohoku.ac.jp

Co-Authors:

SHINJI MORIMOTO, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

TAKU UMEZAWA, National Institute for Environmental Studies, Tsukuba, Japan **KENTARO ISHIJIMA**, Research Institute for Global Change, JAMSTEC, Yokohama, Japan

PRABIR PATRA, Research Institute for Global Change, JAMSTEC, Yokohama, Japan

DOUG WORTHY, Environment Canada, Toronto, Ontario, Canada **DAISUKE GOTO**, National Institute of Polar Research, Tokyo, Japan

SHUJI AOKI, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

TAKAKIYO NAKAZAWA, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract:

We measured the concentration, δ^{13} C and δ D of atmospheric CH₄ at Churchill (58°44'N, 93°50'W) in the northern part of Hudson Bay Lowlands (HBL), Canada during 2007-2014. Compared to the observational results at northern high-latitude background station, Ny-Ålesund, Svalbard (78°55'N, 11°56'E), the CH $_4$ concentration is generally higher and δ^{13} C and δD are lower, reflecting the influence of regional biogenic CH₄ sources. A clear seasonal cycle is observable for both the CH_4 concentration and $\delta^{13}C$, with the respective maximum (minimum) values in January-February (June) and May (October). \deltaD also shows the seasonal cycle, but it is not so clear as those for the CH_{4} concentration and δ^{13} C. The seasonal phases of the three variables are earlier at Churchill than at Ny-Ålesund by up to one month, due to the difference in seasonally dependent CH_{A} emissions from wetlands between the two sites, which is deduced by analyzing their seasonal cycles with a 1-box model. Short-term CH₄ variations are observed throughout the year, showing an enhancement especially in summer. The relationships between the concentration and isotopic ratios for the short-term CH_4 variations yield the respective source signatures of δ^{13} C and δ D to be -63.4 ± 2.8 and $-316\pm24\%$ for summer (May-October), and -47.7±4.5 and -244±52‰ for winter (November-April). These values suggest that the summertime and wintertime short-term CH_4 variations are produced by CH_A emitted from wetlands and fossil fuel, respectively. The results simulated using an atmospheric chemistry transport model (ACTM) reproduce well the CH $_4$ variations observed at Ny-Ålesund, but much exceed the summertime CH_4

concentrations at Churchill. Tagged tracer experiments by the ACTM indicate that such high values are due to CH_4 emissions from the boreal zone in North America, suggesting that wetland fluxes calculated by a process-based ecosystem model (VISIT) to incorporate into the ACTM are overestimated for HBL.