6.176 Intra-seasonal variability in wintertime aerosols at middle Indo Gangetic Plain.

Early Career Scientist

Presenting Author:

Manish Kumar, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi-221005, India, manishenvi@gmail.com

Co-Authors:

R K Singh, International Center for Agricultural Research in the Dry Areas, New Delhi, India

R S Singh, Dept. of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India

T Banerjee, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi-221005, India

Abstract:

A unique wintertime aerosol behavior was identified at middle Indo-Gangetic Plain (IGP) with characteristic episodic variations in their mass loadings, physico-chemical properties and sources within winter months. To assess wintertime aerosol characteristics over middle IGP, near surface PM_{10} , $PM_{2.5}$ and their ionic compositions were examined. Concurrently columnar aerosol distribution through satellite measurements was also made. Exceptionally highPM₁₀ ($268\pm107\mu gm^{-3}$) and PM_{2 5}($150\pm89\mu gm^{-3}$) values were reported for the study period. The varying aerosol distribution during winter recognized a high aerosol loading episode (HALD; $PM_{10}:366\pm101\mu gm^{-3}$, $PM_{2.5}:230\pm86\mu gm^{-3}$), two medium aerosol loading episodes (MALD₁: $PM_{10}:272\pm86\mu gm^{-3}$, $PM_{2.5}:171\pm70\mu gm^{-3}$) & MALD₂: (PM $_{10}$:230 \pm 41 μ gm $^{-3}$, PM $_{2.5}$:123 \pm 51 μ gm $^{-3}$) and a low aerosol loading episode (LALD; PM_{10} :180±68 μ gm⁻³, PM_{25} :67±18 μ gm⁻³). Changes in columnar aerosol properties(MODIS AOD: 0.609-0.937) were found consistent with near surface particulates. A steady shift in fine mode fractions (FMF: 0.01-1.00) between different episodes revealed the existence of a variety of particulates in wider size domains. Satellite derived FMF were found in line with near surface particulate ratio (0.41-0.61). Variable particulate ionic fractions (19-29%) during different aerosol loading episodes were observed. Higher fractions of secondary inorganic aerosols during onset and peak winter (26-29%) highlighted the influence of biomass burning events at IGP along with locally emitted particles. The lagging winter episode however clearly depicted a sharp reduction in particulate ionic species (19-23%). The variability in aerosol characteristics at middle IGP clearly identified the intra-seasonal variations which is associated with their modifying source strength and regional meteorology.