Overall Project Objectives

 Estimate Biomass Burning emissions over Eastern Mediterranean Basin during a large fire event (Antalya fire, August 2008)

1. Simulate the selected fire emission episode with the meteorological model WRF and the regional air quality model CMAQ

Requirements on Fire Emission Product

- 10 km resolution over Eastern Mediterranean Basin
- Hourly time resolution
- Injection height profile estimates

Case Study (Antalya Fire)

Aqua/MODIS207/31/200 Aq 8210:45 UTC

Aqua/MODIS208/01/20 08211:30 UTC Terra/MODIS20 8/02/2008208:5 5 UTC Terra/MODIS208 /03/2008209:40 UTC

Terra/MODIS208/04/200 8208:45 UTC Aqua/MODIS208/05/2 008211:05 UTC Location: province of Antalya (Manavgat and Serik towns)

Time: 31/07/2008 – 05/08/2008

Cost:

- 4500 hectares of forest land
- 60 homes
- Dozens of farming buildings
- 2000 fire fighting personnel

WfABBA fire mask, 08/01/2008 at 02:00 UTC

30

35

42

50

48

46

44

MSG-SEVIRI-based

. . 5

Processed region (no fire found) Processed fires Saturated fire Cloud contaminated fire High probability fire Medium probability fire Low probability fire Non-processed region Satellite zenith angle and solar zenith angle block-out zones Bad input data Cloud Invalid ecosystem type Sea water, coastline fringe, inland water, and other land/water mix Error code in processing

Land SAF fire mask, 08/01/2008 at 02:00 UTC

Processing steps to derive Antalya fire emissions from FRP Pixel product as input to CMAQ model

- 1. Grid FRP PIXEL product to 0.1x0.1 deg grid and correct for cloud cover
- 2. Average over 1 hour

Gridded FRP product at $0.1^{\circ} \times 0.1^{\circ}$ resolution containing area integrated FRP totals corrected for partial cloudiness at the grid-cell scale.

- 1. Injection height (Sofiev et al., 2012): $H_p = \alpha H_{abl} + \beta FRP'^{\gamma} e^{-\delta N_{FT}^{2}}$ *Where* H_{abl} *is the atmospheric boundary layer height*, N_{ft} *is the Brunt-Vaisalia frequency for free troposphere (from WRF and MCIP model) and*, α , β , γ , δ , parameters defining the *dependence on stability in Free Troposphere (Sofiev et al, 2012)*
- 2. Convert to trace gasses and aerosols emission rate (kg/s) with emission factors based on a combination of Andreae and Merlet (2001).

Conversion to Emission (Kaiser et al. 2012)

Emission rate
$$(kg/s) = \binom{\beta}{k} * FRP (MW) * Ef_{i,k} (g/kg)$$

Emission rate_{i,k}: emission rate for species i and for land cover class k B_k : conversion factor for land cover class k **FRP**: Fire Radiative Power

 $\mathbf{Ef}_{i,k}$: emission factor for species i and for land cover class k

							*-
		N	R.	A	8°		}
End Con Con	•		· Co	7			
		1.			· · ·	5	J,
	1-1-	~~~**	-st.				J.

Species	SA	TF	EF AG		PEAT
CO ₂	1646	1626	1572	1308	1703 ^g
CO	61	101	106	92	210 ^g
CH_4	2.2	6.6	4.8	8.4	20.8 ^g
land cover class	abbrev.	conv. factor	Emiss	ion	of
savannah savannah with organic soil agriculture agriculture with organic soil tropical forest peat extratropical forest extratropical forest	SA SAOS AG AGOS TF PEAT EF EFOS	$\begin{array}{c} 0.78 \\ 0.26 \\ 0.29 \\ 0.13 \\ 0.96 \\ 5.87 \\ 0.49 \\ 1.55 \end{array}$	partic have a fo accord al. 20	matters osted by of 3.4 Kaiser et	
with organic soil					

(a) Turkey

(b) Antalya fire

WRF-CMAQ Model Simulations:

- Episode: July 30 August 6, 2008
- Coarse Domain: 30 km resolution covering all Europe to provide boundary conditions for the Eastern Mediterranean:
- **Ref30**: fire emi. GFAS1.0 (daily), 30 km x 30 km
- Nofire30: without fire emi., 30 km x 30 km
- Fine Domain: 10 km resolution covering the Eastern Mediterranean
- Ref10: fire emi. GFAS1.1 (daily), 10 km x 10 km (IC/BC from Ref30)
- LandSAF: fire emi. LandSAF (hourly), 10 km x 10 km (IC/BC from Ref30)
- WF_ABBA: fire emi. WF_ABBA (hourly), 10 km x 10 km (IC/BC from Ref30)
- Nofire10: without fire emi., 10 km x 10 km (IC/BC from Nofire30)
- **CMAQ FIRE :**
- Ref30 (GFASv1.0)
- **Ref10 (GFASv1.1)**
- LandSAF
- WF_ABBA

CMAQ BASE : - Nofire

PM2.5: cross section of the PM2.5 simulated concentration across the maximum AOD (above)

Aug 1st, 11:00 UTC

PM2.5: cross section of the PM2.5 simulated concentration across the maximum AOT (above)

Aug 1st AM

Conclusions

-The SEVIRI based fire emission estimates agree with the GFASv1.1 ones when they describe the Antalya fire; providing a refined description of Antalya fire in terms of temporal behavior.

-GFAS1.1 provides us a better understand of fire emission impact on air quality over the Eastern Mediterranean Basin (agricultural burning in Eastern Europe).

-Good agreement between the simulated CO total columns and the IASI measurements.

Air Quality ground station in Turkey

What FRP is (by definition)

FRE and its time derivative FRP are by definition related to the temperature and size of a fire:

FRP = A σ **T**⁴

where A is the area burning, σ is the Stephan-Boltzman Constant, and T is the temperature of the fire. The typical unit of FRP is Watts (J/s) and FRE is Joules.

What FRP is (by approximation)

This relationship allows approximation of FRP:

$R_4 = aT^4$

where R_4 is the radiance at ~4 µm, a is a curve-fitting constant, and T is the fire temperature. This relationship is only valid for 600K < T < 1400 K and fires are assumed to emit as gray-bodies. The "radiance method" FRP looks like:

FRP=A_{pixel} σ (R_{4,fire}-R_{4,background})/a

Which utilizes the difference between the fire pixel radiance and the background radiance. A_{pixel} is the area of the satellite pixel.

WRF-CMAQ Model Simulations:

WPS Domain Configuration

WRFv3.3 D01: 188x156 cells, 30 km D02: 184x154 cells, 10 km

37 sigma layers, from surface to 10 hPa

IC/BC, nudging on temp, wind and moisture: The National Centers for **Environmental Prediction** (NCEP) Final Analyses (FNL) data of 1 x 1

CMAQv4.7.1 CB05 chemical mechanism AERO5 aerosol scheme IC/BC monthly mean MACC-IFS-MOZ (fbov) Anthropogenic Emissions: TNO/MACC_2005 **Biogenic Emissions: MEGANv2.10**