Submission				
Id	Title	Presenting	Final Category	POSTER CODE
	Transport of black			
	carbon from the			
	planetary boundary			
	layer to free			
	troposphere during			
	the summer			
	monsoon over			
6	South Asia	Prashant Singh	ACAM	ACAM-1A
	The PM2.5			
	carbonaceous			
	abundance and			
	chemical			
	constituents in			
	ampient	Llawashriah		
40	atmosphere of	Hanashrian	ACANA	
40		Hassan	ACAIVI	ACAIVI-ZD
	monovide over the			
	northern Indian			
	Ocean during			
	winter and			
	monsoon: influence			
	of chemistry and			
175	dynamics	Imran Girach	ACAM	ACAM-3C
	Photochemistry			
	over an urban			
	India: Integration of			
	measurements with			
208	hox model	Meghna Soni	ΔΓΔΜ	ΔΓΔΜ-4Α
200	Organic inorganic	Micginia Join		
	and total bromine			
	in the extratropical			
	tropopause and			
	lowermost			
	stratosphere in fall			
	2017: Origins,			
	transport pathways			
	and consequences	Meike		
217	for ozone	Rotermund	ACAM	ACAM-5B
	Exploring potential			
	impacts of Black			
	Carbon on vertical			
	mixing and overall			
	air quality over			
221	Northern India	Prerita Agarwal	ACAM	ACAM-6C

	Non-targeted			
	screening of			
	halogenated			
	organosunates in			
257	atmospheric	Ka Caa	ACANA	
257		Ke Gao		ACAIVI-7A
	Accuracy			
	assessment of			
	IRMM precipitation			
	product across			
	different Agro-			
	Climatic Zones of	VENKADESH		
465	Tamil Nadu, India	SAMYKANNU	ACAM	ACAM-8B
	Impacts of biomass			
	burning over			
	Southeast Asia on			
	regional air quality,			
	radiation, and			
502	meteorology	Jiawei Li	ACAM	ACAM-9C
	Comparisons			
	between satellite			
	and CTM model			
	derived total			
	columns of			
	ammonia over			
527	South and East-Asia	Pooja Pawar	ACAM	ACAM-10A
	The substantial			
	modulation of			
	vertical mixing on			
	new particle			
	formation in			
568	Yangtze River Delta	Shiyi Lai	ACAM	ACAM-11B
	Interannual	1		
	variability of			
	aerosol in the			
	upper			
	tronosnhere/lower			
	stratosphere			
	(LITIS): Connection			
	to the climato			
	variability Acian			
	valiability, ASIdii			
	summer monsoon			
500	strengths, and	Mian Chin	A C A A A	ACANA 12C
586	emissions			ACAIVI-12C
	Storage stability of			
	vuc in canisters			
	under amerent			
	conditions in			
592	HongKong	YUCHEN MAI	ACAM	ACAM-13A

	Light Absorption			
	Properties of			
	Atmospheric Brown			
	Carbon during			
	Winter in Dhaka,			
596	Bangladesh.	ASFAY RAIHAN	ACAM	ACAM-14B
	Combining Multi-			
	Wavelength			
	AERONET SSA			
	Retrievals with an			
	MIE Model and UV			
	Al from OMI to			
	Quantify the Global			
597	AAOD of BC and OC	Xinying Wang	ACAM	ACAM-15C
	Linkage of water			
	vapor distribution			
	in the lower			
	stratosphere to			
	organized Asian			
	summer monsoon	Bhupendra		
608	convection	Bahadur Singh	ACAM	ACAM-16A
	Light Absorption			
	Properties of Brown			
	Carbon from the			
611	Biomass Burning	Md. Islam	ACAM	ACAM-17B
	Transport of air in			
	the region of the			
	Asian monsoon			
	anticyclono and its			
	impact on the			
61/	stratosphere	Bärbel Vogel	ΔζΑΜ	ACAM-18C
014	Atmospheric	Darber Voger		
	outflow of			
	anthronogenic iron			
	and its deposition			
	to China adjacent			
629	seas	Xiaohuan Liu	ΔζΑΜ	ΔCΔM-19Δ
025	Intensified			
	modulation of			
	winter aerosol			
	nollution in China			
	by Fl Niño with			
631	short duration	Liangving Zeng	ACAM	ACAM-20B

	Simultaneous trace			
	gas measurements			
	of the HALO			
	aircraft:			
	Midacorroad			
	widespread			
	detection of HONO			
	in excess of model			
	predictions during			
	the EMeRGe-EU			
	and -Asia			
	campaigns and its			
	possible formation	Beniamin		
653	mechanisms.	Schreiner	ACAM	ACAM-21C
	Oxygenated volatile			
	organic compounds			
	measurement using			
	measurement using			
	proton transfer			
	reaction time-of-			
	flight mass			
	spectrometry in			
	Hong Kong:			
	characteristics,			
	chemical			
	reactivities, and			
	source			
659	apportionment	Lirong HUI	ACAM	ACAM-22A
	TCCON Nicosia:	-		
	First ground-based			
	FTIR greenhouse			
	gas measurements			
	in the Eastern			
	Maditerraneen and	Constanting		
661	Middle Fast region	Constantina	A C A A A	
661	Ivilddie East region	Rousogenous	ACAM	ACAIM-23B
	Carbon and health			
	implications of			
664	trade restrictions	Lulu Chen	ACAM	ACAM-24C
	Compositional			
	Analysis of Cloud			
	Droplet Residuals			
	by High Resolution			
	Time-of-Flight			
	Aerosol Mass			
	Spectrometry: A			
	CAMP2Fx Case			
670	Study	Claire Robinson	ACAM	ACANA_25A
070	Judy			

			·	
	Observations of			
	Regional Biomass			
	Burning and Urban			
	Trace Gas			
	Enhancement			
	Ratios in Southeast			
	Asia and their			
	Relationship with			
	Aerosol			
	Composition and			
682	Air Quality	Joshua DiGangi	ΔζΑΜ	ΔCΔM-26B
002		Joshua Dioungi		
	The Implication of			
	Oil Production to			
	Ozone Chemistry in			
	the Oilfield Regions			
683	of Northern China	Tianshu Chen	ACAM	ACAM-27C
	Airborne and			
	Satellite			
	Investigation of			
	Asian Air Quality			
	(ASIA-AQ): An			
	Opportunity for			
	International	James		
708	Collaboration	Crawford	ACAM	ACAM-28A
	Aerosol structure,			
	absorption and			
	interactions with			
	the PBL and impact			
740	on surface pollution	Zhanging Li	ACAM	ACAM-29B
	Decadal trend of			
	black carbon			
	aerosols over the			
	Central Himalavas:			
	17 years of ground	Privanka		
754	observations	Srivastava	ACAM	ACAM-30A
	Quantitative			
	Assessment of			
	Black Carbon over			
	Southern China			
	During Springtime:			
	Regional and			
	Sectoral Sources			
	and the Impacts of			
	Fast Asian Summer			
786	Monsoon Onset	Chenwei Fang	ACAM	ACAM-31A
780	WOUSDOIL OUSEL	Chenweirang	ACAIVI	ACAMISIA

	Aromatics derived			
	oxygenated organic			
	molecules in Hong			
	Kong: Source,			
	formation and	Penggang		
795	impacts	ZHENG	ACAM	ACAM-32B
	Aqueous	_		
	production of			
	secondary organic			
	aerosol from fossil-			
	fuel emissions in			
803	winter Reijing haze	lunfeng Wang	ΔζΑΜ	ACAM-33C
005	Investigation of			ACAIN 35C
	Dust Transportation			
	Effocts on			
	Motoorological			
	Daramotors in			
020	Study in 2020	Limur Dinc	0000	ACANA 24A
838	Chamical formation			ACAIVI-54A
	nathways of			
	patriways of			
	secondary organic			
	the Deliving Tioniin			
	thebeijing-hanjin-			
0.40	Hebel region in	lie Li	A.C.A.M.	
848	Wintertime Calariadused	JIE LI	ACAM	ACAIVI-35B
	Solar induced			
	fluorescence and			
	NO2 measurements			
	from I ROPOIVII to			
	constrain NO2			
24	deposition fluxes to	- · - · ·		
34	Vegetation	Erin Delaria	AMIGO	AMIGO-1A
	Ambient			
	characterization of			
	marine shipping			
	emissions at the			
	Port of Ningbo-			
	Zhoushan on the			
	coast of East China			
87	Sea	Dantong Liu	AMIGO	AMIGO-2B
	Source			
	Apportionment of			
	Volatile Organic			
	Compounds and			
	Trace Metals in	Morshad		
102	Houston	Ahmed	AMIGO	AMIGO-3C

	Trends and			
	of ammonia across			
	major biomes			
	inferred from long-			
	term series of			
	ground-based and			
	satellite	Money		
110	measurements	Ossohou	AMIGO	AMIGO-4A
	Long-term air			
	fact growing future			
	megacities in the			
130	tropics	Karn Vohra	AMIGO	AMIGO-5B
	Global-Scale In-Situ			
	Measurements of			
	Aerosol Optical			
	Depth: An Overview			
	from the			
	Atmospheric			
13/	(ATom) Project	Charles Brock	AMIGO	
134		Charles brock		AWIGO-0C
	Satellite-Based			
	Emission Estimates			
	Bromine During			
	Arctic Spring in the			
142	GEOS-Chem Model	Pamela Wales	AMIGO	AMIGO-7A
	Evaluating the			
	detectability of			
	methane point			
	sources from			
	satellite observing			
	systems using	Divuch		
149	modeling	Bhardwai	AMIGO	AMIGO-8B
115	How well can	Bharawaj		
	satellite derived			
	XCO2 determine			
	seasonal and			
	interannual			
	changes of CO2			
	over oceans?			
	Evaluation by			
	aircraft			
153	observations	Astrid Müller	AMIGO	AMIGO-9C

	Anthropogenic			
	point sources of			
	ethylene revealed			
211	from space	Bruno Franco	AMIGO	AMIGO-10A
	Meteorology-			
	aerosol-chemistry			
	multiphase data			
	assimilation system			
	improves			
	estimation of			
	wildfire			
	carbonaceous	.		
226	emissions and	Benjamin		
226	transport	Gaubert	AMIGO	AMIGO-11B
	Impact of the			
	Raikoke voicanic			
	eruption 2019 on			
	Homisphore LIT/LS			
	acrosol load and			
	nroperties as seen			
	from MGOS			
	CARIBIC in-situ	Andreas		
272	observations	Petzold	AMIGO	AMIGO-12C
	Increasing actional	1 012010		/
	emission			
	advanced spatio	Anno Carolino		
280	temporal inversion		AMIGO	
205	Evaluation of new	Lange		ANIOO 13A
	4D-variational			
	inverse modeling			
	system, CIF-			
	CHIMERE: Inversion			
	of NOx emissions			
	over China using			
	NO2 OMI			
319	observations	Dilek Savas	AMIGO	AMIGO-14B
	Tropospheric NO2			
	observed from			
	space with			
	Copernicus			
	Sentinel-5			
	Precursor			
	Precursor TROPOMI:			
	Precursor TROPOMI: Validation with			
	Precursor TROPOMI: Validation with ground-based			

	Agricultural emissions of ammonia estimated with satellite			
	observations and			
360	GEOS-Chem	Eloise Marais	AMIGO	AMIGO-16A
	New insights on			
	NOx sources and			
	sinks from the			
	divergence of the			
369	mean flux	Steffen Beirle	AMIGO	AMIGO-17B
	Using WRF-Chem Volcano to model			
	the in-plume			
	halogen chemistry	Luko Curl		
777	or Etha S 2018			
577	Contribution of	WITHDRAWN	AMIGO	AIVIIGO-18C
	to PM2 5 in Secul			
	constrained by			
	carbon, nitrogen.			
	and oxygen isotopic			
434	ratios	Meehye Lee	AMIGO	AMIGO-19A
	Expanded			
	observations of			
	oxygenated organic			
	compounds in			
	urban emissions via			
	ammonium-adduct			
	chemical ionization			
444	mass spectrometry	Drew Gentner	AMIGO	AMIGO-20B
	Assimilating CrIS			
	Observations to			
	Improve U.S.			
150	Ammonia Emissions			
456	within CMAQ	Shannon Capps	AMIGO	AMIGO-21C
	A comprehensive			
	analysis of snipping			
	Moditorrangen and			
	the Black Soc	Andreas		
481	regions	Pseftogkas	AMIGO	AMIGO-22A

i.		i da se	i i i i i i i i i i i i i i i i i i i		1
	500	4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-Chem adjoint with bi- directional and uni- directional flux schemes	Hansen Cao	AMIGO	AMIGO-23B
	FOF	Swiss Halocarbon Emissions Derived from Regional Atmospheric	Dominique		
	505	Refining Ammonia Emissions Estimates with Satellite-based Observations Using a Novel Framework and an Air Quality	Congmong Luu	AMIGO	
	515	Modeling methane from the North Sea region with ICON- ART	Christian	AMIGO	AMIGO-25A
	567	TROPOMI based NOx emission estimate for Asia	Hao Kong	AMIGO	AMIGO-27C
	569	Investigation of the temporal and spatial variability of methane flux estimations from mass balance approach, using FLEXPART-WRF methane fields	Sarah-Lena Meyer	AMIGO	AMIGO-28A
	583	Sources of PM2.5 and BC in Beijing Based on Hourly Continuous Online Measurements from 2016 to 2019	Yue Liu	AMIGO	AMIGO-29B

1	1	1		1
	Direct estimates of			
	biomass burning			
	NOx emissions and			
	lifetime using daily			
	observations from			
587	TROPOMI	Xiaomeng Jin	AMIGO	AMIGO-30C
	Brown Carbon in			
	Harbin, China			
	during the heating			
595	season of 2018	Jiumeng Liu	AMIGO	AMIGO-31A
	A new divergence			
	method to quantify			
	methane emissions			
	using observations			
	of Sentinel-5P			
605	TROPOMI	Mengyao Liu	AMIGO	AMIGO-32B
	Globally Significant			
	methane fluxes			
	from African			
613	tropical wetlands	Jacob Shaw	AMIGO	AMIGO-33C
	Improving OMI-			
	NO2 resolution			
	based on deep			
	learning over			
626	central and	Santiago		
626	southern Chile	Parraguez	AMIGO	AIVIIGU-34A
	High-resolution			
	tropospheric NO2			
627	satellite retrieval in			
637	Asia based on UIVII	Yunang Zhang	AMIGO	AIVIIGO-35B
	Estimation of			
	Production and			
	Emission based on			
	Geostationary			
	Satellite Remote			
	Sensing			
642	Observations	Wentai Zhang	AMIGO	AMIGO-36C
	Global-Scale			
	Observation and			
	Evaluation of			
	Nitrous Oxide from			
	IASI: Application to			
648	Source Estimates	Philippe Ricaud	AMIGO	AMIGO-37A

663	Reconciling Assumptions in Bottom Up and Top Down Approaches for Estimating Aerosol Emissions from Wildland Fires in the Western US using Observations from FIREX-AQ	Elizabeth Wiggins	AMIGO	AMIGO-38B
667	3 years of urban CO2 emissions in the San Francisco Bay Area inferred from a low-cost	Alexander	AMIGO	
007	Applications of	rumer		Alviido-35C
	satellite-derived	Ronald van der		
672	NOx emissions	А	AMIGO	AMIGO-40A
675	Temporal variations of atmospheric NH3 revealed from space: from intraday cycles to long-term global trends	Lieven Clarisse	AMIGO	AMIGO-41B
600	Optimizing carbon monoxide emission estimates from Californian wildfires through inverse modeling based on high-resolution satellite	Johann Nüß	AMIGO	
699	observations	Johann Nuß	AMIGO	AMIGO-42C
721	Satellite-derived NOx emissions for 80 global megacities between 2005 and 2019	Daniel Goldberg	AMIGO	AMIGO-43A

	Estimation of NOx, SO2 and HCHO emissions from the Megacity of Lahore, Pakistan using car MAX-DOAS observations and comparison with regional atmospheric chemistry model and TROPOspheric Monitoring			
	(TROPOMI) satellite			
771	data	Maria Razi	AMIGO	AMIGO-44B
	Airborne greenhouse gas (CO2 and CH4) measurements in			
775	Cyprus	Yunsong Liu	AMIGO	AMIGO-45C
	INSIGHTS OF THE ACCURACY OF BOTTOM-UP AND TOP-DOWN LOCAL EMISSION INVENTORIES THROUGH HIGH- RESOLUTION ATMOSPHERIC			
791	MODELING	Carlos Gonzalez	AMIGO	AMIGO-46A
793	Identification of major air pollutant source location in India using satellite data and statistical- based analysis	Abhishek Chhari	AMIGO	AMIGO-47B
814	Propane emission estimates over Europe using observations and an inverse modelling approach	Francesco Graziosi	AMIGO	AMIGO-48C

	Methane and non- methane			
	hydrocarbons			
	concentrations and			
	sources in an			
	Eastern	Emeric		
	Mediterranean	Germain-		
818	Island (Cyprus)	Piaulenne	AMIGO	AMIGO-49A
	The local and			
	remote climate and			
	human health			
	impacts of Africa's			
	21st century			
	aerosol emission			
81	trajectory	Chris Wells	ANGA Working Group	ANGA-1A
	Dominant			
	contribution of			
	nitrogen			
	compounds in			
	precipitation			
	Lake Victoria			
	catchmont (East	Adama		
127	Africa)		ANGA Working Group	
127	Characterization of	BARATORO		ANGA-26
	aerosol ovidative			
	notential over			
	African cities: a			
	metric for relating			
	air pollution and	Cathy Leal-		
371	health effects	Liousse	ANGA Working Group	ANGA-3C
	Assessment of			
	Respirable			
	Crystalline Silica			
	Exposure among			
	Miners of Konkola			
494	Underground Mine	Mwaba Sifanu	ANGA Working Group	ANGA-4A
	REVIEW OF			
	OCCUPATIONAL			
	EXPOSURE TO			
	RESPIRABLE			
	CRYSTALLINE SILICA			
	TO MINEWORKERS			
	AT MOPANI			
	MUFULIRA MINE IN	Lubinda		
495	ZAMBIA	Nabiwa	ANGA Working Group	ANGA-5B

540	Evidence of Long- Term Trend of Visibility in the Sahel and Coevolution with Meteorological Conditions and Vegetation Cover during the Recent Period	N'Datchoh TOURE	ANGA Working Group	ANGA-6C
552	14C-based Source Apportionment of Black Carbon in PM2.5 aerosols in	Loopard Kirago	ANGA Working Group	
555	Learning the lessons of more than 150 years of air quality management: recommendations for future efforts to	Aderiana		
610	Optical Properties of Water-Soluble Carbonaceous Aerosols at the Rwanda Climate	Samuel	ANGA Working Group	ANGA-8B
701	Observatory Urban emissions inventories development for air quality modelling in Abidjan and Korhogo cities	Mwaniki Gaita	ANGA Working Group	ANGA-9C
	HDM-4 Model Calibration and Estimation of Vehicular Emissions			
735	in Nairobi, Kenya How Has Sub- Saharan Africa's Air Quality and Climate Been Altered by Recent Land Use and Land Cover Change and Emissions Changes?	Ezekiel NYAGA Timothy	ANGA Working Group	ANGA-11B

	Atmospheric Particulate Matter			
	and gases at high			
	altitude: a case			
830	Mt. Kenya	Anne Mutahi	ANGA Working Group	ANGA-13A
	Occupational		<u> </u>	
	exposure and			
	spatial distribution			
	concentrations at			
	Lanseria			
	International			
856	Airport	Raeesa Moolla	ANGA Working Group	ANGA-14B
	Air pollution in			
	West African cities			
	and some strategies			
	pollutant emissions	Veronique		
862	reduction.	Yoboue	ANGA Working Group	ANGA-15C
	THE AFRICA			
	ASSESSIVIENT OF			
	CLIMATE CHANGE			
	& SUSTAINABLE			
	DEVELOPMENT IN	Youba		
863	AFRICA	Sokona,	ANGA Working Group	ANGA-16A
	volatile organic			
	compounds under	Ana Yañez-		
33	global change	Serrano	Americas Working Group	AMERICAS-1A
	Air pollution			
	measurements in			
43	Patagonia	Zoe Fleming	Americas Working Group	AMERICAS-2B
	Assessing	,		
	population			
	exposure to air			
	Metropolitan Lima			
	and Callao, Peru:			
	Creating a high-			
	resolution spatial			
	with limited data			
	supported by air			
506	quality monitoring	Ben Richmond	Americas Working Group	AMERICAS-3C

	Ammonia temporal			
	variability from			
	urban ground-			
	based FTIR			
529	measurements	Beatriz Herrera	Americas Working Group	AMERICAS-4A
	Air-borne			
	measurements of			
	CH2O, C2H2O2, and			
	C3H4O2* and CO			
	over the Amazon			
	and their biomass			
	burning emission			
	factors in hismass			
600	hurping plumos	Elora Klugo	Amoricas Working Group	
000		FIDIA KIUge		AIVIENICASSE
	SÃO PALILO -			
	BRAZII WITH THE			
	REGIONAL			
	CHEMISTRY			
	TRANSPORT			
	EURAD-INVERSE			
	MODEL ON HIGH-			
627	RESOLUTION	Ediclê Duarte	Americas Working Group	AMERICAS-6C
	An atmospheric			
	perspective on			
	Amazon fire			
678	emissions	Maarten Krol	Americas Working Group	AMERICAS-7A
	Changes in			
	Mortality in			
	Response to			
	Decreases in Ozone			
	and PM2.5			
	Concentrations			
	States from 1000 to	Dovothi		
602	2010	Muralidharan	Americas Working Group	
052	Ozone trends at	Iviarananaran		AMERICAS OB
	Tololo (30.17° S.			
	70.80° W. 2154 m			
	a.s.l.) GAW			
	monitoring station			
	in Chile: an update			
	and attribution			
711	study.	Laura Gallardo	Americas Working Group	AMERICAS-9C

	ASSESSMENT OF TOAR OZONE			
	OVER LATIN			
726	AMERICAN CITIES	Angel Gálvez	Americas Working Group	AMERICAS-10A
	Assessing brown			
	carbon light			
	aerosol ontical			
	properties in	Armando		
733	Mexico City	Retama	Americas Working Group	AMERICAS-11B
	Hourly variation of			
	polycyclic aromatic			
	hydrocarbons in a			
	receptor site in	Yadira		
	Mexico City during	Martínez-		
839	the cold dry season	Dominguez	Americas Working Group	AMERICAS-12C
	Evolution of organic			
	aerosol from wood			
	by burning phase			
115	and solar radiation	Siyuan Li	BIOMASS BURNING	BB-1A
	Uncertainty in fire	,		
	emission factors			
	and the impact on			
	modeled	Pohocca		
140	and O3	Buchholz	BIOMASS BURNING	BB-2B
	Using observations			
	of Western U.S.			
	wildfire smoke to			
	improve fire			
	emissions in air			
144	models	Megan Bela	BIOMASS BURNING	BB-3C
	Employing the			
	model to reproduce			
	aerosol transport			
	characteristics over			
	Southeast Asia:			
	comparison of			
	burning emission			
184	inventories	Shuo Wang	BIOMASS BURNING	BB-4A

	The impact of			
	biomass burning			
	emissions on			
	Protected Natural			
447	southern Mexico	Fabiola Truiano	BIOMASS BURNING	BB-5B
	Effects of fire			00 00
	diurnal variation on			
	U.S. air quality			
	during FIREX-AQ			
	based on the Multi-			
	Scale Infrastructure			
	for Chemistry and			
503	V0)	Wenfu Tang	BIOMASS BURNING	BB-6C
	Characterizing the			
	Physical and			
	Chemical Evolution			
	of Organic Aerosol			
	in Biomass Burning			
	Smoke using Gas-			
	Molecular Tracers			
	from Laboratory			
	and FIREX-AQ	Melinda		
510	Observations	Schueneman	BIOMASS BURNING	BB-7A
	Global Wildfire			
	Plume-Rise Data Set			
	and			
	for Climate Model			
514	Applications	Ziming Ke	BIOMASS BURNING	BB-8B
	Persistent Influence			
	of Biomass Burning			
	Aerosols during			
	Clean Air			
	Western United			
526	States	Rvan Farley	BIOMASS BURNING	BB-9C
	Submicron Particle			
	Composition and			
	Acidity in Fire			
	Plumes during			
FF1	FIREX-AQ aircraft			DD 104
551	study	попууи Guo	DIOIVIASS BUKINING	BB-TNA
	Does Combustion			
	Condition Impact			
557	Biomass Burning	Rudra Pokhrel	BIOMASS BURNING	BB-11B

	Aerosol Hygroscopicity?			
	Tygroscopierty:			
	Sources and characteristics of paddy-residue burning derived carbonaceous aerosols using dual			
577	carbon isotopes	M Devaprasad	BIOMASS BURNING	BB-12C
	method of estimating NO2 emissions over South, Southeast and East Asia based on OMI NO2			
632	observations	Jian Liu	BIOMASS BURNING	BB-13A
	Aerosol Emissions Factors for Agricultural Fires in the Southeast			
668	United States	Richard Moore	BIOMASS BURNING	BB-14B
703	Photolysis of biomass burning organic aerosol, chemical transformations and photo- bleaching	Rachel O'Brien	BIOMASS BURNING	BB-15C
	A Machine Learning Approach for Identifying Smoke Plumes Based on GOES Satellite Observations Over the United States Using the Trained on the Hazard Mapping System Fire and Smoke	Benjamin		
706	Product	Brown-Steiner	BIOMASS BURNING	BB-16A
719	Aerosol properties and processing during wintertime under hazy condition	Susan Mathai	BIOMASS BURNING	BB-17B
, 15		Sasan muunui	5.5.11.05 501.1110	00 110

762	Investigating the effect of wildfire on PM2.5 in southeastern U.S. in November 2016	Shuhui Guan	BIOMASS BURNING	BB-18C
776	Salting-out effects on evolvement of light-absorbing SOA in atmospheric aerosols	Jackson Tham	BIOMASS BURNING	BB-19A
878	Mechanism development and model studies on the chemical multiphase processing of key biomass burning tracers with the new CAPRAM BRM1.0 modulo	Lin Ho		PP 20P
828	BBM1.0 module	Lin He	BIOMASS BURNING	BB-20B
139	Heterogeneous ice nucleation in the WRF-Chem model and its influence on the cloud response to volcanic aerosols	Louis Marelle	САТСН	CATCH-1A
181	Characterization and chemical imaging of aerosol in West Antarctica.	Sérgio Gonçalves Junior	САТСН	CATCH-2B
199	Impact of biomass burning aerosol from Amazon associated with changes of snow albedo over the Central Andes mountains using satellite remote sensing data	Tomás R. Bolaño-Ortiz	САТСН	CATCH-3C
	Role of oceanic ozone deposition in explaining short- term variability of			
344	high-Arctic sites	Barten	САТСН	CATCH-4A

	3-D modeling of bromine chemistry and boundary-layer mercury depletion across the			
450	springtime Arctic	Kenjiro Toyota	САТСН	CATCH-5B
472	Molecular simulations on potassium-rich feldspar surfaces interacting with ions and possibility of ice nucleation	Anand Kumar	САТСН	CATCH-6C
485	Oxidation of methanesulfonate into sulfate at inland Antarctica evidenced by 170- excess signature	Sakiko Ishino	САТСН	CATCH-7A
512	Simulating brown carbon aerosol over High Mountain Asia: WRF-Chem model implementation and application	Caplin He	САТСН	
515	Investigating the relationship of meteorology and atmospheric composition to snow cover: A comparative study over High- Mountain Asia and Andes	Chayan Roychoudhury	САТСН	CATCH-9C
518	The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer.	Jessica Burger	САТСН	CATCH-10A

	A Southern Ocean- wide examination of Multi-year Trends in Sea Ice, Chlorophyll Concentration and	Srichti		
519	Marine Aerosol	Dasarathy WITHDRAWN	САТСН	CATCH-11B
	14CO in Glacial Ice from Law Dome, Antarctica as a Tracer of Changes in Atmospheric OH Abundance from			
530	1870 AD to Present	Peter Neff	CATCH	CATCH-12C
	wintertime N2O5 deposition and snowpack CINO2			
541	production	Kathryn Kulju	CATCH	CATCH-13A
545	Using 1D-modelling to study Arctic chlorine activation, transport and VOC oxidation during Arctic springtime	Shaddy Ahmed	САТСН	CATCH-14B
562	Modeling large dust deposition events to alpine snow and their impacts: the role of model resolution	Foteini Baladima	САТСН	CATCH-15C
570	Atmospheric nitrogen deposition and watershed budget at the Lautaret Pass	Jim Grisillon	САТСН	CATCH-16A
575	What we learn from fundamental laboratory studies at the Swiss Light Source about atmospheric chemistry.	Thorsten Bartels-Rausch	САТСН	CATCH-17B

	Reactive nitrogen species in polar environments: a laboratory-based study of nitrous acid gas (HONO)			
C04	production from	Amalia Dand	CATCH	
604	Short-term	Amelia Bond	CATCH	CATCH-18C
	variability in			
	atmospheric carbon			
	dioxide as observed			
	from coastal			
617	Antarctica	Freya Squires	САТСН	CATCH-19A
	Trend analysis of			
	aerosol particle			
	physical properties			
	at Villum Research			
625	Greenland	Jakob Pernov	САТСН	CΔTCH-20B
023	Acidity-driven	Jakob i ciliov		CATCH 200
	enhancement of			
	sulfate formation			
	after SO2 emission			
	control evidenced			
	by 170-excess of			
630	ice core sulfate.	Shohei Hattori	САТСН	CATCH-21C
	Unprecedented snow darkening and melting in New Zealand due to 2019–2020			
654	Australian wildfires	Wei Pu	САТСН	CATCH-22A
	An overview of the			
	role of atmospheric			
	composition within			
6//	the CRiceS project	Jennie Thomas	CATCH	CATCH-23B
	impact through			
	combined field and			
	modelling studies –			
	Example: sea salt			
	aerosol from			
	blowing snow			
695	above polar sea ice	Markus Frey	CATCH	CATCH-24C

	The evolving sources of cloud condensation nuclei			
	North Atlantic:			
	preliminary results			
702	from the SEANA	Alexander	CATCH	
702	project	Kurganskiy		CATCH-25A
	Modelling Study of	Roya		
709	the Arctic Clouds	Ghahreman	САТСН	CATCH-26B
	Sea Spray Aerosol			
	Generation			
	Summertime High	Jessica		
712	Arctic Pack Ice	Mirrielees	САТСН	CATCH-27C
	Using both a			
	blowing snow			
	source and a			
	model reactive			
	bromine in GEOS-	William		
717	Chem	Swanson	САТСН	CATCH-28A
	Using gas phase,			
	particle, and snow			
	composition data to			
	understand the			
	reactive bromine			
	cycling in the Arctic			
724	boundary layer	Daun Jeong	САТСН	CATCH-29B
	Impacts of			
	anthropogenic			
	emissions on			
	tropospheric			
	and the oxidation			
	capacity of the			
734	atmosphere	Shuting Zhai	САТСН	CATCH-30C
	Observations of			
	iodine monoxide			
	over three			
	summers at the			
	bases Bharati and	Anoop		
782	Maitri	Mahajan	САТСН	CATCH-31A

	Changes in the Structure of the			
	Freeze-			
	Concentrated			
	Solution in the			
	Veins of ice due to			
809	Rates	Jan Zezula	САТСН	CATCH-32B
	Halogen elements			
	in two sub-			
	Antarctic ice cores			
	and their suitability			
823	as sea ice proxies	Delia Segato	САТСН	CATCH-33C
	Perspectives of an			
	early career			
	researcher in the			
	atmosphoro			
	interactions			
825	community	Megan Willis	САТСН	CATCH-34A
	Geographic	-0		
	distribution of			
	fluorescent			
	bioaerosols and			
	roles of marine			
	biological particles			
	in the cloud			
945	processes over the	Kaori Kawana	САТСН	
645	Linderstanding of	KdUII KdWdIId		CATCH-SSB
	the snace-time			
	variations of			
	hydroxyl (OH) using			
	methyl choloroform			
45	(CH3CCI3)	Prabir Patra	ССМІ	CCMI-1A
	Coupling interactive			
	fire with			
	atmospheric			
	composition and			
	Climate in the UK			
58	(LIKESM)	loao Teixeira	ССМІ	CCMI-2B
	Understanding the			
	historical changes			
	in tropospheric			
	nalogens and their	Tomás		
70	last century	Sherwen	ССМІ	CCMI-3C
19	iast certary		COM	

l .	Irroversible changes	Ì		Ì
	in the future global			
	mathana avala			
	methane cycle			
	under the			
	aggressive-			
	mitigation SSP1-2.6			
	scenario, simulated			
	with a fully			
	coupled, dynamic			
	methane cycle			
	process model in			
84	UKESM1.0.	Gerd Folberth	ССМІ	CCMI-4A
	Climate-driven			
	chemistry and			
	aerosol feedbacks			
	in Earth system			
89	models	William Collins	ССМІ	CCMI-5B
	Turbulence-			
	vegetation-			
	chemistry			
	interactions:			
	Impacts on OH			
	reactivity at a			
145	deciduous forest	Olivia Clifton	ССМІ	CCMI-6C
	Atmospheric			
	Chemistry in the			
168	, OpenIFS Model	Marcus Köhler	ссмі	CCMI-7A
	Impact of			
	heatwayes and			
	drought stress on			
	isonrene in a LIK			
	temperate forest			
	results from the			
	2018-2020			
185	campaigns	Valerio Ferracci	CCMI	CCMI-8B
105	Characterisation			
	and Molecularly			
	Resolved Source			
	Apportionment of			
	Brown Carbon			
	Absorption by UV-			
	vis Spectroscopy			
	and Atmospheric			
	Pressure Chemical			
	Ionisation-Mass	Liudongqing		
192	Spectrometry	Yang	CCMI	CCMI-9C

		Ozone Production in U.S. Thunderstorm Convective Outflow			
	195	Regions	Mary Barth	ССМІ	CCMI-10A
		Investigating aerosol radiative adjustment mechanisms and magnitudes with			
	202	model nudging	Max Coleman	ССМІ	CCMI-11B
ŀ	202	Ozone changes			
		from past to future: characterising regional ozone sensitivity across			
L	230	the globe	Zhenze Liu	ССМІ	CCMI-12C
	25.4	Insights from MOZAIC long-term routine in-situ measurements into vertical distribution, seasonal variability and tropospheric fingerprint of ice- supersaturated air masses in the northern mid- latitudes	Success Dates	COMU	CCN41 124
ŀ	254	How dotailed	Susallie Kulls		CCIVII-15A
	277	should a vegetation canopy be represented for ozone deposition impact assessments?	Auke Visser	ССМІ	CCMI-14B
	286	New MESSy scavenging subroutine to treat aerosol particles gas-phase partitioning in convective clouds	Giorgio Taverna	ССМІ	CCMI-15C
	306	One value of cloud pH to rule them all: The impact of an interactive cloud pH scheme on aerosols in UKESM1	Steven Turnock	ССМІ	CCMI-16A

	Methane: At the Interface between Hydrology, Atmospheric			
	Composition, Air			
316	Climate	Fiona O'Connor	ССМІ	CCMI-17B
349	Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP	David Stevenson	ССМІ	CCMI-18C
	Graph Theory and			
200	Atmospheric	Sam Silva	CCMI	
390	Examining the	Salli Silva		CCIVII-19A
	Competition			
	Between Oxidation			
	and Deposition in the Fate of Reactive	Gabriel Isaacman-		
412	Organic Carbon	VanWertz	ССМІ	CCMI-20B
	Reactive nitrogen in			
	global upper			
	troposphere from			
	MOZAIC aircraft			
413	campaigns	Nana Wei	ССМІ	CCMI-21C
	A large source of	Demenies		
417	cloud droplets	Taraborrelli	ссмі	CCMI-22A
	The NOAA Baseline			
	Balloon			
	Stratospheric			
449	(B2SAP) Project	Elizabeth Asher	ССМІ	CCMI-23B
	Dynamical			
	downscaling of a			
	global chemistry-			
	study the influence			
	of climate change			
	and variability on			
	mid-21st century	Surendra		
455	continental US	Kunwar	ССМІ	CCMI-24C

	Two proxies reflect OH variability on			
	local scales in the	Colleen		
457	remote atmosphere	Baublitz	ССМІ	CCMI-25A
	Viscosity of			
	Secondary Organic			
	Aerosol: Effects of	Ciuconno		
175	Ovidation Mothod	Giuseppe	CCMI	
475		Crescenzo		
	of-Air: Influence of			
	SF6 Emissions in			
	Recent Surface			
	Trends and Model			
480	Biases	Clara Orbe	ССМІ	CCMI-27C
	Observed and			
	simulated effects of			
	droughts and			
	heatwaves on			
	ozone			
	concentration in			
484	Southern Europe	Antoine Guion	ССМІ	CCMI-28A
	Climatological			
	pattern of			
	associated with the			
491	Australian Bushfires	Donghee Lee	ссмі	CCMI-29B
131	Intercomparison of	Donghee Lee		
	Ground- and			
	Satellite-Based			
	Total Ozone			
	Column Data at			
	Three stations,	SONGKANG		
492	Antarctic Region	KIM	ССМІ	CCMI-30C
	Direct Comparison			
	of the Submicron			
	Aerosol			
	Hygroscopicity of			
F.01	Water-Soluble	Katiba Malak	COM	CCN41 21 A
501	Jomicnhoric	копра мајек		CCIVII-31A
	Englichning NOX			
	Impact on Ground-			
512	Level Ozone	Mike Madden	ССМІ	CCMI-32B
501	of the Submicron Aerosol Hygroscopicity of Water-Soluble Sugars Hemispheric Lightning NOx Emissions and the Impact on Ground- Level Ozone	Kotiba Malek Mike Madden	ССМІ	CCMI-31A CCMI-32B

	Observational Metrics that Relate to the Answers we seek from	Mishaol		
523	Models	Prather	ССМІ	CCMI-33C
F 47	Impacts of future land use and land cover change on mid-21st-century			
547	A Simplified	Lang wang		CCIVII-34A
548	Chemistry- Dynamical Model	Hao-Jhe Hong	ССМІ	CCMI-35B
	Study of Different Carbon Bond 6 (CB6) Mechanisms by Using a Concentration			
599	Sensitivity Analysis	Le Cao	ССМІ	CCMI-36C
	constrained analysis of sulfur species in the			
615	marine atmosphere	Huisheng Bian	ССМІ	CCMI-37A
	Depletion Potentials Metric for Short-Lived Chemicals Such as			
621	CF3I and CH3I	Jun Zhang	ССМІ	CCMI-38B
	impact on air quality using the global chemistry and transport			
657	model TM4-ECPL	Medea Zanoli	ССМІ	CCMI-39C
666	CMIP6 model simulations of PM2.5 components in China	Fangxuan Ren	ССМІ	CCMI-40A
	Modeling	- ang/aan nen		
669	atmospheric brown carbon in the GISS ModelE Earth system model	Maegan DeLessio	ССМІ	CCMI-41B

	Enhancing chemical			
	schemes accounted			
	in the FI FXPART			
	v10.4 transport			
	model using a			
	kinetic			
673	preprocessor	Ruben Sousse	ССМІ	CCMI-42C
0,0	preprocessor			
	In- and out-of-cloud			
	measurements at			
	SMEAR IV for			
	pristine conditions			
	and an aged forest	Angela		
676	fire plume event	Buchholz	ССМІ	CCMI-43A
	Observations of			
	Lightning NOx			
	Production from			
	TROPOMI Case			
	Studies over the			
700	United States	Dale Allen	ССМІ	CCMI-44B
	The fingerprint of			
	Biomass Burning on			
	CO in the remote	Nikos		
704	atmosphere	Daskalakis	ССМІ	CCMI-45C
	Assessing global			
	chemistry-climate			
	simulations on the			
	long term in the			
	UTLS with the			
713	IAGOS database	Yann Cohen	CCMI	CCMI-46A
	Continuity of the			
	Arosa ozone			
	column series after			
	Dobson automation			
	and the			
	displacement of the			
	LKO instruments to			
720	Davos	René Stübi	ССМІ	CCMI-47B
	An overview of			
	iodine chemistry			
	over the Indian and			
	Southern Ocean			
	waters using ship-			
	based observations	Swaleha		
755	and modelling	Inamdar	ССМІ	CCMI-48C

1	1	1	1	1
	Arctic warming and			
	associated sea ice			
	reduction in the			
	early 20th century			
	induced by natural			
	forcings in MRI-			
	ESM2.0 climate			
770	simulations and	T 1 4 1		
//3	multimodel analyse	Takuro Alzawa		CCIVII-49A
	A Core-Shell Kinetic			
	simulating Viscosity			
	dependent			
	secondary organic			
	Aerosol (CSVA) and			
783	its applications	Long Jia	ССМІ	CCMI-50B
	The impact of			
	changes in			
	anthropogenic			
	emissions on future			
	summer ozone			
	concentrations over			
	China based on			
787	CMIP6	Xinran Zeng	ССМІ	CCMI-51C
	Dust minerais in the	Marias		
	atmosphere as	Chatzinarascho		
796	Nuclei Particles	s	ССМІ	CCMI-52A
, 30	Global PM2.5	5		
	prediction and			
	estimated mortality			
	to 2050 under			
	different climate			
797	change scenarios	Wanying CHEN	ССМІ	CCMI-53B
	Co-benefits of			
	changing diet. A			
	modelling			
	assessment at the			
	regional scale			
	integrating social			
	acceptability,	N 4: ala ala		
820	environmental and	Maiono	CCM	
020	Size-resolved	IVIAIUTE		
	aerosol nH over			
	Europe during	Stylianos		
822	summer	Kakavas	ССМІ	CCMI-55A

	Estimation of			
	radiative forcing			
	and heating rate			
	observation of			
	black carbon in	Shuangshuang		
854	Naniing, China	Shi	ССМІ	CCMI-56B
	On the formation of			
	formic acid from			
	formaldehyde			
	processing in liquid	Jean-Francois		
857	clouds	Muller	ССМІ	CCMI-57C
	Assessment of the			
	impact of OH's			
	temporal resolution			
850	on the global	Sofia Gomez	COM	
859	Eirst year of real-	Maqueo Anaya		CCIVII-58A
	time VOC			
	measurements at			
	the SIRTA facility			
	(Paris region,			
	France): diurnal and			
	seasonal			
	variabilities, impact			
	of COVID-19			
207	lockdown on air			CO)/ID 14
307	quality Global transcriberic	Lella Simon		COVID-1A
	ozone responses to			
	reduced NOx			
	emissions linked to			
	the COVID-19			
	world-wide	Kazuyuki		
321	lockdowns	Miyazaki	COVID-19	COVID-2B
	Impact of			
	Singapore's COVID-			
	19 lockdown on			
	atmospheric CO2			
462	Tiuxes at	Frik Volacco		
403		LIIK VEIDSCU		
	the Emission			
	Changes in Europe			
	During 2020 Due to			
	the COVID-19			
	Mobility			
466	Restrictions	Marc Guevara	COVID-19	COVID-4A

	US COVID-19 shutdown demonstrates importance of			
	background NO2 in			
	emissions from			
	satellite NO2			
479	observations	Zhen Qu	COVID-19	COVID-5B
	The impact of			
	projections, and the			
	use of scenario			
	analysis tools for			
	modelling impacts			
	strategies on air			
	pollutant emissions			
508	and concentrations.	Ben Pearson	COVID-19	COVID-6C
	Do satellite-based			
	observations help			
	with the			
	quantitative			
	prediction of			
	during the			
521	pandemic?	Amir Souri	COVID-19	COVID-7A
	Managing Linkow CO			
	with BFACO2N and			
522	Bayesian Inversions	Naomi Asimow	COVID-19	COVID-8B
	Impact of COVID-19			
	on NOx and VOC			
	based on multi-			
	species satellite	Jenny		
531	data and modeling	Stavrakou	COVID-19	COVID-9C
	The Impact of			
	Lockdowns and Car			
	Free- day Policy on			
	Levels of Air			
EE 4	Pollution in Kigali,	Egido Kalica		
554	INWAIIUA	LEIUC NAIISA		COVID-TON

	Fast Climate			
	Aerosol Emission			
	Reductions During			
	the COVID-19			
573	Pandemic	Yang Yang	COVID-19	COVID-11B
	The effects of the			
	COVID-19			
	lockdowns on air-			
	quality throughout			
	the troposphere as			
	seen by IAGOS in-			
578	situ data	Hannah Clark	COVID-19	COVID-12C
	Impacts of COVID-			
	19 on Black Carbon			
	In Iwo Bonrocontativo			
	Representative Regions in China			
	Regions in China Based on Online			
	Measurement in			
582	Beijing and Tibet	Mei Zheng	COVID-19	COVID-13A
	Analysis of the			
	effect of the COVID-			
	19 lockdown on			
	Aerosol Optical			
	Properties over			
585	Bangladesh	Khaled Joy	COVID-19	COVID-14B
	From COVID-19 to			
	Future			
	Electrification:			
	Assessing Traffic			
	Impacts on Air			
	Quality by a			
500	Madal	liani Vang		
590	would	Jianii tang		COMD-13C
	Knowns and			
	impacts of COVID			
	10 lockdowns on	Coorgios		
616	urban air quality	Georgios		
010	Chemistry of	GRALZEIIS		COVID-10A
	Atmospheric Fine			
	Particles during the			
	COVID-19 Pandemic			
	in a Megacity of			
633	Eastern China	Lei Liu	COVID-19	COVID-17B
	Covid-19 induced			
	lower-tropospheric	Mariano		
694	ozone changes	Mertens	COVID-19	COVID-18C
	Quantifying and attributing carbon monoxide (CO)			
-----	--	----------------	----------	-----------
	emission changes in			
	during the COVID-			
716	19 shutdown	Luke Schiferl	COVID-19	COVID-19A
	Errors and			
	uncertainties			
	associated with			
	mobility and traffic			
	activity data for			
	fuel CO2 emissions			
	during the COVID-			
722	19 pandemic	Tomohiro Oda	COVID-19	COVID-20B
	Impact of the			
	COVID-19 lockdown			
	Ozono PM2 5 and			
	SOA in the Mexico			
738	Megalopolis	Victor Almanza	COVID-19	COVID-21C
	Lockdown			
	influences on			
	Ozone, NO2, and			
745	CO over Asia: Some	Draiiwal Rawat		
745		Prajjwarkawat		COVID-22A
	Changes in aerosol			
	subcontinent			
	during the COVID19	Satvendra		
763	Lockdown in 2020	Pandey	COVID-19	COVID-23B
	Exploring Changes			
	in Air Quality Across			
	Africa from COVID-			
	2021: Observations			
	from the AfrigAir	Michael		
780	Network	Giordano	COVID-19	COVID-24C
	Investigating Air			
	Quality and			
	Emissions Changes			
	Lockdown			
	Measures in Mexico			
	City with Satellite	Duncan		
798	Observations	Quevedo	COVID-19	COVID-25A

	Hourly Organic			
	Tracer-based			
	Source			
	Apportionment of			
	PM2.5 before and			
	during the Covid-19			
	lockdown: A Case			
000	Study in Suburban			
802		Shan WANG	COVID-19	COVID-26B
821		ΒΑΛΙ ΧΑΠΑΛ		
021	High-latitude urban			0010 270
	air quality: 20			
	months of aerosol			
	composition data			
	from Fairbanks,			
849	Alaska	Ellis Robinson	COVID-19	COVID-28A
	Hygroscopicity of			
	fresh and aged			
	mineral dust			
5	aerosol	Mingjin Tang	China Working Group	CHINA-1A
	Health Effects of			
	Global Air Pollution			
	on Reproduction:			
	from Fertility Rate			
	Reduction in United			
	States, to			
	Pregnancy Loss in			
	Africa, and Preterm			
202	China	Tong 7hu	China Working Group	
502	Online			CHINA-2D
	Measurement of			
	Fine Aerosol Nitrite			
	via a Versatile			
	Aerosol			
	Concentration			
	Enrichment System			
	Coupled with Ion			
473	Chromatography	Xiaona Shang	China Working Group	CHINA-3C
	Atmospheric			
	Environmental			
	Impacts of Freight			
490	Transportation	Huan Liu	China Working Group	CHINA-4A

	Dibasic Esters			
	Observed as			
	Potential Emerging			
	Pollutants in New			
	Apartments in			
565	Beijing, China	Yingjun Liu	China Working Group	CHINA-5B
	Effects of Regional			
	Transport on Haze			
	in the North China			
	Plain: Transport of			
	Secondary			
674	Inorganic Aerosols	Jie Li	China Working Group	CHINA-6C
	Overview of the			
	aircraft			
	measurements in			
	the Northeastern			
684	and Northern China	Shan Ye	China Working Group	CHINA-7A
	The researches of			
	oxidants in the			
742	atmosphere	Shengrui Tong	China Working Group	CHINA-8B
	The long-term			
	trend of acidity and			
	chemical			
	compositions of			
758	Shanghai	Shivu Ve	China Working Group	
/ 58		Sillyu le		CHINA-SC
	climate change and			
	extreme weather			
	events on ozone			
767	formation	Yang Gao	China Working Group	CHINA-10A
	Estimation of			
	heterogeneous			
	ozone oxidation			
	rates of oleic,			
	eialaic, and linoleic			
	organic aerosols			
	using their hourly	Qionggiong		
770	measurement data.	Wang	China Working Group	CHINA-11B
	Health Impact of			
770	Arsenic: 2005-2015	lei 7hang	China Working Group	CHINA-12C
,,,,	7.1301101 2003 2013			011101 120

Terpene-derived			
Organosulfates	Jian Zhen Yu	China Working Group	CHINA-13A
Aerosol Acidity and Water Content as a Driver of Aerosol Formation, Intense Haze Events and Nutrient Deposition	Athanasios Nenes	China Working Group	CHINA-14B
Study on the Ozone			
Photochemistry in	Koding Lu	China Working Group	
First comprehensive measurements on atmospheric photochemistry over the Tibetan			
Plateau	Chunxiang Ye	China Working Group	CHINA-16B
Identification of Different Generation Oxidation Products and Tracers: Secondary Organic Aerosol Formation from Aromatic Precursors	Deepchandra Srivastava	FUNDAMENTALS AND FUTURES	FF-1A
Exploring modeled impacts and uncertainties of DMS oxidation			
mechanisms	Linia Tashmim	FUNDAMENTALS AND FUTURES	FF-2B
First observations of gas-phase urea in the atmosphere	Emily Matthews	FUNDAMENTALS AND FUTURES	FF-3C
Coexistence of three liquid phases in individual atmospheric aerosol particles	Fabian Mahrt	FUNDAMENTALS AND FUTURES	FF-4A
Water as the pH probe for individual particles using micro-Raman spectroscopy	Xiaovu Cui	FUNDAMENTALS AND FUTURES	FF-5B
	Terpene-derivedNitrooxyOrganosulfatesAerosol Acidity andWater Content as aDriver of AerosolFormation, IntenseHaze Events andNutrient DepositionStudy on the OzonePhotochemistry inChinaFirstcomprehensivemeasurements onatmosphericphotochemistryover the TibetanPlateauIdentification ofDifferentGenerationOxidation Productsand Tracers:Secondary OrganicAerosol Formationfrom AromaticPrecursorsExploring modeledimpacts anduncertainties ofDMS oxidationmechanismsFirst observationsof gas-phase urea inthe atmosphereCoexistence ofthree liquid phasesin individualatmosphericaerosol particlesWater as the pHprobe for individualparticles usingmicro-Ramanspectroscopy	Terpene-derivedNitrooxyJian Zhen YuAerosol Acidity andJian Zhen YuAerosol Acidity andAerosol Acidity andWater Content as aDriver of AerosolFormation, IntenseAthanasiosHaze Events andAthanasiosNutrient DepositionNenesStudy on the OzonePhotochemistry inChinaKeding LuFirstComprehensivemeasurements onatmosphericphotochemistryOver the TibetanPlateauChunxiang YeIdentification ofDifferentGenerationOxidation Productsand Tracers:Secondary OrganicAerosol FormationDeepchandrafrom AromaticDeepchandraPrecursorsSrivastavaExploring modeledEmilyimpacts andLinia TashmimFirst observationsEmilyof gas-phase urea inEmilythe atmosphereFabian MahrtWater as the pHFabian MahrtWater as the pHprobe for individualparticles usingmicro-RamanspectroscopyXiaoyu Cui	Terper-derivedJian Zhen YuChina Working GroupOrganosulfatesJian Zhen YuChina Working GroupAerosol Acidity and Water Content as a Driver of AerosolAthanasiosFormation, IntenseAthanasiosNenesHaze Events and Nutrient DepositionNenesChina Working GroupStudy on the Ozone Photochemistry in ChinaKeding LuChina Working GroupFirstKeding LuChina Working GroupFirstComprehensive measurements on atmospheric photochemistry over the Tibetan PlateauChunxiang YePlateauChunxiang YeChina Working GroupIdentification of Different Generation Oxidation Products and Tracers: Secondary Organic Aerosol Formation from AromaticDeepchandra SrivastavaPrecursorsSrivastavaFUNDAMENTALS AND FUTURESFirst observations of gas-phase urea in the atmospheric aerosol particlesEmily MatthewsFirst observations of gas-phase urea in the atmospheric aerosol particlesFabian MahrtFUNDAMENTALS AND FUTURESFabian MahrtFundamental StringFundamentals AND FUTURESWater as the pH probe for individual atmospheric aerosol particlesFabian MahrtFUNDAMENTALS AND FUTURESFabian MahrtFUNDAMENTALS AND FUTURESWater as the pH probe for individual particles using micro-Raman spectroscopyKiaoyu CuiFUNDAMENTALS AND FUTURES

		<u>.</u>			
		Using			
		Measurements of			
		Atmospheric 14CO			
		in a Global Network			
		to Improve			
		Understanding of			
		OH Spatial and			
		Temporal			
	343	Variability	Vasilii Petrenko	FUNDAMENTALS AND FUTURES	FF-6C
		Criegee			
		intermediate yields			
		from seven			
		atmospherically			
		important ozone-	Beth Nelson		
	348	alkene systems	WITHDRAWN	FUNDAMENTALS AND FUTURES	FF-7A
		Renoxification on			
		Aerosol Particles			
		over the Atlantic	Simone		
	352	Ocean	Andersen	FUNDAMENTALS AND FUTURES	FF-8B
		Organic nitrate			
		deposition to trees:			
		processes, rates			
		and atmospheric			
	421	implications	Bryan Place	FUNDAMENTALS AND FUTURES	FF-9C
		Elucidation of the	,		
		Structure and			
		Formation			
		Mechanism of			
		Dimer Esters in			
		Monoterpene			
		Secondary Organic	Christopher		
	454	Aerosol	Kenseth	FUNDAMENTALS AND FUTURES	FF-10A
		The Viscosity of			
		Organic Films from			
	478	Cooking Aerosol	Kristian Kiland	FUNDAMENTALS AND FUTURES	FF-11B
		Nitrate-mediated			
		photooxidation of			
		organic acids in the			
	488	aqueous phase	Theodora Nah	FUNDAMENTALS AND FUTURES	FF-12C
		Unveiling Processes			
		in Secondary			
		Organic Aerosol			
		Particles during			
		Isothermal			
ļ	517	Evaporation	Zijun Li	FUNDAMENTALS AND FUTURES	FF-13A

	Formation of secondary aerosols, particulate nitrogen- and sulfur-containing organics through anthropogenic- biogenic			
524	interactions at night	Li Xu	FUNDAMENTALS AND FUTURES	FF-14B
	Highly oxygenated organic nitrates formed from NO3 radical initiated oxidation of β-			
532	pinene	Hongru Shen	FUNDAMENTALS AND FUTURES	FF-15C
	An evaluation of the unexplored generation of hydrogen from the photolysis of aldehydes using two photochemistry	Maria Pároz-		
543	models	Peña	FUNDAMENTALS AND FUTURES	FF-16A
544	Insights into tropical cloud chemistry at La Reunion Island reveals a high supersaturation of low-soluble VOCs in the aqueous phase	Pamela DOMINUTTI	FUNDAMENTALS AND FUTURES	FF-17B
	Spatial heterogeneity of LDSA using a pilot network of LDSA			
566	sensors	Jacinta Edebeli	FUNDAMENTALS AND FUTURES	FF-18C
579	Stereoscopic remote sensing of atmospheric trace gases	Cheng Liu	FUNDAMENTALS AND FUTURES	FF-19A
603	O2induced SO2 oxidation in aerosol formation	Narcisse Tsona	FUNDAMENTALS AND FUTURES	FF-20A

	Influence of			
	atmospheric			
	conditions on the			
	role of			
	trifluoroacetic acid			
	in atmospheric			
	sulfuric acid-			
	dimethylamine			
612	nucleation	Ling Ling	FUNDAMENTALS AND FUTURES	FF-21C
	Comprehensive			
	product			
	characterization in			
	the OH oxidation of			
	dimethyl sulfide			
	using an			
	environmental			
634	chamber	Qing Ye	FUNDAMENTALS AND FUTURES	FF-22A
	Role of photo-			
	generated hydroxyl			
	radicals in the			
	ozone depletion on			
	the surface of and			
	stratosphoric			
630		lun Ho		FF-73B
035	Enabling exchange	Juirrie	TONDAMENTALS AND FOTORES	11 250
	and adequate use			
	of data for			
	observation based			
	atmospheric			
641	research	Jörg Klausen	FUNDAMENTALS AND FUTURES	FF-24C
	Constructing			
	constructing shapes and mixing			
	structures of black			
	carbon particles			
	with applications to	Yuanyuan		
646	optical calculations	Wang	FUNDAMENTALS AND FUTURES	FF-25A
	Application of the			
	method to			
	determine the			
	atmospheric			
	carbonyl			
	compounds using			
	liquid			
	chromatography			
	tandem mass			
	spectrometry (LC-			
	MS/MS) to ship			55 0 C D
658	measurement	Yang XU	FUNDAMENTALS AND FUTURES	FF-26B

1					
		Characterizing			
		dynamic behaviors			
		of phthalate			
		monoesters and			
	660	diesters in an office	Yatai Li	FUNDAMENTALS AND FUTURES	FF-27C
		Reaction Products			
		and Pathways of			
		Alkoxy Radicals in			
		the Condensed			
	685	Phase	Victoria Barber	FUNDAMENTALS AND FUTURES	FF-28A
		A new mobile UAV-			
		based platform of			
		ACTRIS for			
		atmospheric			
	705	profiling	Maria Kezoudi	FUNDAMENTALS AND FUTURES	FF-29B
		Submicron aerosol			
		acidity variability at			
		a Mediterranean	Anna Maria		
	728	Coastal site	Neroladaki	FUNDAMENTALS AND FUTURES	FF-30C
		Seasonal Variation			
		in Phase State and			
		Chemical			
		Composition of			
		Ambient Particles			
		Collected at the			
		Southern Great			
		Plains Site at			
	746	Different Altitude	Zezhen Cheng	FUNDAMENTALS AND FUTURES	FF-31A
		Synergistic			
		Multiphase			
		Chemistry of			
		Isoprene Hydroxy			
		Hydroperoxides			
		(ISOPOOH) with			
		Sulfur Dioxide in			
		Acidic Sulfate			
		Aerosols Leading to			
		Secondary			
		Inorganic and			
		Organic Aerosol			
	749	Formation	Yue Zhang	FUNDAMENTALS AND FUTURES	FF-32B
		televet free time and			
		Identification and			
		quantification of			
		tracer products and			
ļ		their violds in the			
ļ	757	ovidation of	Shuwu Ha		
	/5/		эпиуи пе	I UNDAMILINIALS AND FUTURES	11-330

	toluene and m-			
	xylene			
	Supersaturated			
	state accelerates			
	the uncatalyzed			
	autoxidation of SO2			
	within aerosol			
761	droplets	Pai Liu	FUNDAMENTALS AND FUTURES	FF-34A
	Atmospheric gas-			
	phase alkylamines			
	In the			
	their relation to			
	new narticle	Evangelia		
768	formation	Tzitzikalaki	FUNDAMENTALS AND FUTURES	FF-35B
	What has data			
	science ever done			
	for us? Successes,			
	reflections from a	Daul Voung		
785	data dilletante		FUNDAMENTALS AND FUTURES	FE-36C
/05	Theoretical Study	WITTERAWN	TONDAMENTALS AND FOTORES	11 500
	on the Role of			
	Environmental			
	Factors in EPFRs			
	Formation over			
799	CuO Surface	Danli Liang	FUNDAMENTALS AND FUTURES	FF-37A
	The role of			
	Organophosphate			
	Esters Flame			
	Retardants and			
	plasticizers (OPEs)			
	in Phosphorus Cycle			
	in the atmosphere	Kalliani		
011	Noditorrangen See			
	Physicochomical	VIULANI	TONDAIVIENTALS AND FUTURES	FT-30D
	nronerties and Ice			
	Nucleation			
	Potential of Long-			
	range Transported			
	Free tropospheric	Nurun Nahar		
837	aerosols	Lata	FUNDAMENTALS AND FUTURES	FF-39C

1	1	1	1	1
	Development of			
	"Chemspot"			
	instrument for the			
	characterization of	PURUSHOTTA		
842	organic aerosol	M KUMAR	FUNDAMENTALS AND FUTURES	FF-40A
	A Kinetic and			
	Mechanistic Study			
	on the			
	Photochemistry of			
	Polycylic Aromatic			
	Hydrocarbons and			
	its Effect on			
	Atmospheric Iron	Desiree		
847	Solubility	Sarmiento	FUNDAMENTALS AND FUTURES	FF-41B
	A new chemical			
	pathway for			
	stratospheric			
	sulfate aerosol			
858	formation	Erik Larson	FUNDAMENTALS AND FUTURES	FF-42C
	Road Traffic			
	Emission Inventory			
	in an Urban Zone of			
	West Africa: Case of			
	Yopougon City			
	(Abidjan, Côte	DOUMBIA		
9	d'Ivoire)	Madina	GEIA	GEAI-1A
	ESTIMATION OF			
	POLLUTANT			
	EMISSIONS BY			
	INDUSTRIAL			
	SOURCES IN			
	BOGOTÁ UNDER			
	POWER MATRIXES			
	SCENARIOS			
	PROJECTED TO THE			
	YEAR 2050			
	IMPLEMENTING	Karen		
13	THE LEAP MODEL	Hernandez	GEIA	GEIA-2B
	The influence of			
	change the fuel			
	type used in power			
	plants on reduction			
	of carbon dioxide			
	emission in the			
	Energy Sector of			
30	Azerbaijan	Sadig Hasanov	GEIA	GEIA-3C

	Characterising			
	oceanic emissions			
	of alkenes and their			
55	impacts	Ryan Pound	GEIA	GEIA-4A
	The CAMS Global			
	and Regional			
	Emissions for			
	Global and Regional			
	Forecasts and			
59	Reanalyses	Claire Granier	GEIA	GEIA-5B
	Incorporating			
	interactive surface			
	exchange of			
	ammonia into			
	chemistry-climate			
125	models	Jize Jiang	GEIA	GEIA-6C
	Secondary Organic			
	Aerosol Formation			
	from Emissions of			
173	Coastal Sage Shrubs	Archit Mehra	GEIA	GEIA-7A
	Connecting			
	seasonal variability			
	in monoterpene			
	concentrations to			
	features in the			
	biosphere of a			
	southeastern U.S.	Deborah		
210	forest.	McGlynn	GEIA	GIEA-8B
	Evaluation of black			
	carbon emissions in			
	East Asia:			
	Comparisons of six			
	inventories and			
	constraints from			
	surface			
240	observations and	Kabailkada	CELA	
240	Invoctigation of	KUTIELIKEUA	GEIA	GEIA-9C
	major omission			
	sources and			
	nhotochemical			
	processes of			
	Volatile Organic			
	Compounds (VOCs)			
	at a suburban site			
	of New Delhi India			
244	in the winter	Nidhi Trinathi	GEIA	GEIA-10A

	Forecasting policy,			
	technologies for			
	reducing transport			
422	emissions in Chile	Mauricia Occor	CELA	
422	Aerosols in Western	Mauricio Osses		GEIA-11B
	Mediterranean			
	Basin: three			
	complementary			
	approaches for	Abdolfattab		
469	identification	Benchrif	GEIA	GEIA-12C
	Road Traffic	Denomi		02
	Emission Inventory			
	in an Urban Zone of			
	West Africa: Case of			
	Abidian Côte	Madina		
471	d'Ivoire)	Doumbia	GEIA	GEIA-13A
	A comprehensive			
	and spatially			
	resolved Mercury			
	for Indian	Madhusmita		
474	Subcontinent	Mishra	GEIA	GEIA-14B
	Quantification of			
	methane emissions			
	from offshore oil &			
482	Norwegian Sea.	Amy Foulds	GEIA	GEIA-15C
	Experimental	,		
	determination of			
	isoprene and other			
	from Platanus x			
	hispanica under	Carmen		
483	urban conditions	Kalalian	GEIA	GEIA-16A
	Emission sources			
	and health risk of			
	compounds during			
	heating season in			
	rural northern			
497	China	Hui Chen	GEIA	GEIA-17B
	The CAMS Global			
498	Emissions	Antonin Soulié	GEIA	GEIA-18C

499	Estimation of Methane emissions from Akouédo landfill through a modelling approach	Séka Yapo	GEIA	GEIA-19A
520	Global Emission trends to 2020 from the Community Emissions Data System (CEDS)	Steven Smith	GEIA	GEIA-20B
	Annual changes of ship emissions around China under gradually promoted control policies			
525	from 2016 to 2019	Xiaotong Wang	GEIA	GEIA-21C
	Third Revision of			
	Clobal Surface			
	Seawater Dimethyl			
	Sulphide			
	Climatology (DMS-	Shrivardhan		
528	Rev3)	Hulswar	GEIA	GEIA-22A
533	A Technological Inventory of Particulate Matter Emission for Indian Megacity Kolkata	Poonam Mangarai	GEIA	GEIA-23B
	Unfolding Inventory	Wangaraj		GLIA 250
	of Indoor Air Pollutant Emission in Indian Household: An Invisible Potential			
534	Threat	Saroj Sahu	GEIA	GEIA-24C
	EMISSIONS FROM STATIONARY SOURCES AND THEIR IMPACT ON AIR QUALITY IN			
536	CUBA	Cuesta Osvaldo	GEIA	GEIA-25A

		The CAMS-REG v5			
		high-resolution			
		European emission			
		inventory for air			
		pollutants and			
		greenhouse gases			
		(2000-2018) to			
		support air quality			
		and climate change			
	546	modelling	Stijn Dellaert	GEIA	GEIA-26B
		Understanding the			
		Effect of Drought			
		on Biogenic			
		Isoprene and the			
		Biosphere-			
		Atmosphere-			
		Chemistry			
		Relationship with			
		NASA GISS			
	F 40	ModelE+MEGAN	Elizabeth	CELA	CELA 270
	549	Simulations	Klovenski	GEIA	GEIA-27C
		The Effects of Light			
		on the Emission of			
		Biogenic Isoprene			
		and Monoterpenes			
	563	: A Review	Xinyu Wang	GEIA	GEIA-28A
		Downscaling			
		method: Increasing			
		the resolution of			
		EDGAR emission			
		inventory data for			
		complex terrains			
	564	like Switzerland	Curdin Spirig	GEIA	GEIA-29B
		Sensitivity of			
		amission schomos			
		in WPE Chom(v2.6)			
		to vogotation			
		distributions and its			
		impacts over East	Mingshuai		
	572	China	7hang	GEIA	GEIA-30C
ļ	572	BVOCs emission	21015		SLIA SUC
ļ		factors of urban			
	591	green trees	Yuran Tan	GEIA	GEIA-31A

1		I	I	1
	A case study to			
	clarity emissions of			
	biogenic volatile			
	organic compounds			
	(BVOCs) based on			
	measurements of			
	total ozone			
	reactivity in the			
	ambient air of a			
	suburban forest in			
598	Japan	Jun Matsumoto	GEIA	GEIA-32B
	RTFII: A new high-			
	resolution (0.1° \times			
	(0.1°) road transport			
	omission inventory			
	over India of 74			
	DM2 E constrained			
	, PIVIZ.5 CONSTITUTIEU			
	by measured			
	emission factors			
	and regional			
64.0	venicular activity	I to so the tradition	CELA	CE14 22C
618		назеер наккіт	GEIA	GEIA-33C
	A new "hybrid"			
	gridded 1 km × 1			
	km emission			
	inventory for paddy			
	stubble burning			
	reveals that stubble			
	burning is a massive			
	source of VOCs			
	unaccounted for by			
	existing emission			
	inventories and			
	overwhelms other			
	anthropogenic			
	activities over the			
619	Indo-Gangetic Plain.	Ashish Kumar	GEIA	GEIA-34A
	Volatile chemical			
	product emissions			
	and criteria			
	pollutant			
	enhancements in			
1		1	1	

645	Global NH3 emissions from livestock management : implementation of a dynamical module within a land surface model and impact on atmospheric chemistry	Maureen Beaudor	GEIA	GFIA-36C
	Airborne			
	measurements of			
	biomass burning			
	plumes and urban			
	and wetland			
	emissions using			
	Laser-Induced			
662	Spectroscopy	Samuel Seldon	GEIA	GFIA-37A
	Modeling and			
	Mapping Biomass			
	Burning for High			
	with the Wildland			
	Fire Emissions			
	Inventory System			
710	(WFEIS)	Nancy French	GEIA	GEIA-38B
714	Improving the bottom-up estimates of natural geologic emissions via microseepage	Marika Stock	GEIA	GEIA-39C
	Assessing vehicle			
	fuel efficiency using	Helen		
718	CO2 observations	Fitzmaurice	GEIA	GFIA-40A
710	Comparison of			
	bottom-up and top-			
	down road			
	transport emission			
725	inventories	Erika Trejos	GEIA	GEIA-41B
	COvid-19			
	adjustment Factors			
	(CONFORM) · A	Thierno		
731	dataset for	Doumbia	GEIA	GEIA-42C

1	atmospheric		1	
	models			
	Global high-			
	resolution			
	emissions of soil			
	NOx sea salt			
	aerosols and			
752	hiogenic VOCs	Hongijan Weng	GEIA	GEIA-43A
152	The impact of land			
	The impact of failu			
	biogenic emissions			
	from urban green			
	space on summer			
	ozone formation			
	over North China			
759	Plain	Mingchen Ma	GEIA	GEIA-44B
	Municipal solid			
	waste burning is a			
	neglected source of			
	highly reactive			
	VOCs that fuel			
	ozone formation	Pooia		
777	over rural India	Chaudhary	GEIA	GEIA-45C
	Posidontial heating	Chaddhary		
	more aerosol			
	pollution than			
	paddy-residue			
	burning and in rural			
788	northwest India	Harshita Pawar	GEIA	GEIA-46A
	Agricultural			
	particulate matter			
	emissions in the			
	Colombian Orinoco	Andres Ardila		
834	region	Ardila	GEIA	GEIA-47B
	Particulate matter			
	emission factors for			
	light and heavy-			
	duty vehicles in a			
	South American			
	moracity (São	Guilbormo		
0.05	Deule Dra=11	Deneire	CELA	CE1A 40C
835	Paulo, Brazil)	Pereira	GEIA	GEIA-48C

	Reactive Nitrogen Emissions from			
	Emission, Emission			
	Factor, and			
840	Modeling	Viney Aneja	GEIA	GEIA-49A
	Atmospheric VOCs			
	Emitted from			
	Fireworks in			
	City Measured by a	Maribel		
	Real-time Vocus	Hernández-		
841	PTR-TOF-MS	Camarillo	GEIA	GEIA-50B
	Geostatistical analysis and			
	inventory of			
	emissions from			
	sugarcane pre-			
	Southwest	ANDREA		
846	Colombia	CARDOZO	GEIA	GEIA-51C
	Updating the 2013			
	National Emissions			
	quality modeling in			
851	Central Mexico	Jose Rodriguez	GEIA	GEIA-52A
	Estimating Road			
	Transportation			
	CNNs and Satellite	Rvan		
855	Imagery	Mukherjee	GEIA	GEIA-53B
	Light absorption			
	properties of brown			
	carbon aerosols in			
	Implications from a			
	combination of			
	filter and ground			
	remote sensing			
93	Fukue Island, Japan	Chunmao Zhu	Japan National Committee	JNC-1A

	Evaluation of a			
	Low-Cost Mobile			
	PM2.5 Sensor and			
	Application to the			
	Measurements			
	along the Janan			
147	National Route 1	Kenta Kanegae	Japan National Committee	INC-2B
117	Effects of marine	Kentu Kunegue		5110 20
	nitrogen fixation on			
	the formation of			
	atmospheric water-			
	soluble organic			
	nitrogen revealed			
	hy a laboratory			
	incubation			
232	experiment	Yuzo Miyazaki	Japan National Committee	INC-3C
	A chemistry-	ruzo miyuzuki		5110 00
	transport modeling			
	to support satellite			
	observations of			
	NO2 and CO2			
	emitted from	Yousuke		
248	megacities	Yamashita	Japan National Committee	JNC-5A
	Temperature and			
	acidity dependence			
	of secondary			
	organic aerosol			
	formation from α-			
	pinene oxidation:			
	implication for SOA			
249	models	Yange Deng	Japan National Committee	JNC-6C
	Modelling the			
	sources of air			
	pollution over the	Adedayo		
281	East China Sea	Adedeji	Japan National Committee	JNC-7A
	First Concurrent			
	Observations of			
	NO2 and CO2 from			
	Power Plant Plumes			
	by Airborne	Tamaki		
476	Remote Sensing	Fujinawa	Japan National Committee	JNC-8B
	A comparison of			
	the impact of			
	TROPOMI and OMI			
	tropospheric NO2			
	on global chemical			
	data assimilation			
	and emission			
507	inversion	Takashi Sekiya	Japan National Committee	JNC-9C

	Aerosol soluble iron production under clean, haze and fog			
	conditions at a			
560	coastal site of China	Daizhou Zhang	Japan National Committee	JNC-10A
	Anthropogenic			
	Contribution to			
	Particulate Chloride			
	in Marine Aerosol			
581	China	Junvi Liu	Japan National Committee	JNC-11B
	Investigation of the			
	black carbon in East			
	Asia: validation of a			
	below- and in-cloud			
	wet removal			
	PARTicle			
	(FLEXPART) model			
588	v10.4	Yongjoo Choi	Japan National Committee	JNC-12C
	Changes in			
	tropospheric			
	vertical column			
	densities over			
	Japan and Korea			
	during the COVID-			
580	19 using Pandora	Vongioo Choi	Janan National Committee	
585	Observing			JINC-13A
	anthropogenic			
	emissions of			
	greenhouse gases			
	with the GOSAT-			
	GW satellite:			
	Scientific targets			
	and policy	Hiroshi		
593	contributions	Tanimoto	Japan National Committee	JNC-14B
	Model analysis of			
	the atmospheric			
	aerosol			
	concentrations and			
	aepositions by ship-			
644	observations over	Kazuyo Yamaji	Japan National Committee	JNC-15C

	the Eastern Indian			
	Ocean			
	Investigation of			
	adhesivity of			
	marine organic			
	aerosols by atomic			
681	force microscopy	Kohei Ono	Japan National Committee	JNC-16A
	Chemical			
	characteristics of			
	humic-like			
	substance (HULIS)			
	organic aerosol in a			
	cool-temperate			
750	forest area of Japan	Sonia Afsana	Japan National Committee	JNC-17B
	Indoor Air Quality		· · · ·	
	Indicators and			
	Toxicity Potential at			
	the Hospitals'			
	Environment in			
82	Dhaka Bangladesh	Shahid Zaman	MANGO	MANGO-1A
02			MANGO	
	Indoor Exposure of			
	Particulate Matter			
	and Association of			
	PM2.5 with Lung			
	Function and			
	Oxygen Saturation			
	Level of the			
	Residents in Dhaka,			
95	Bangladesh	Samiha Nahian	MANGO	MANGO-2B
	Fine particulate			
	matter			
	concentrations			
	during 2020-2021			
	Lunar New Year			
	holidays and the			
	COVID-19 pandomic			
	in Ho Chi Minh City	Cong Thanh		
170	Vietnem		MANGO	
1 1/9	vietnam	iran	IVIANGU	IVIANGU-3C

1	Evolution of urban			
	20rosols in warm			
	and numid			
	environment:			
	Number			
	concentrations &			
285	specific density	Yang Lan	MANGO	MANGO-4A
	Particulate Matter			
	Pollution over			
	North Western			
	India using			
	integrated			
	modeling approach:			
	Case Study of Pre-			
300	monsoon Event	MANISH SONI	MANGO	MANGO-5B
	Investigating the			
	nerformance of			
	WRF-Chem in			
	simulating the			
	Indian Summer			
	Moncoon and			
	wonsoon and			
	associated	Currenti		
250	chemistry-feedback	Sreyashi		
350	processes	Debhath	MANGO	MANGO-6C
	A model- and			
	observation-based			
	approach to			
	quantify trends and			
	uncertainty of			
	premature			
	mortality due to			
408	PM2.5 in China	Paolo Giani	MANGO	MANGO-7A
	Assessment of			
	statistical models to			
	improve			
	performance of	Pongpichit		
	low-cost optical	Chuanraksasat		
	aerosol sensors in a			
	warm and humid	NOTE:		
452	urban environment	Withdrawn	MANGO	MANGO-8B
	Effect of relative			
	humidity on SOA			
	formation from			
	aromatic			
	hydrocarbons:			
	Implications from			
	the evolution of			
	gas- and narticle-			
450	bas and particle	Tianzong Chan	MANGO	
459	hildse sheries	LIGHTZENG CHEH		JE-ODNAN

1	1	1	Î.	1
	Fungal spores as			
	emission sources of			
	137Cs to ambient			
	aerosols after a			
	nuclear accident in	Kimitaka		
460	Fukushima 2011	Kawamura	MANGO	MANGO-10A
	Personal PM2.5			
	exposures of solid			
	fuel users in rural			
	China: in vitro			
	toxicity and			
	chemical			
486	composition	Alexandra Lai	MANGO	MANGO-11B
	Multi-drugs			
	Resistant Bacteria			
	Associated			
	Particulate Matter			
	in the Ambient Air			
	over Dhaka,			
537	Bangladesh	Razia Ankhy	MANGO	MANGO-12C
	A ship-borne field			
	campaign on ozone			
	and precursors in			
747	Hong Kong waters	Xin FENG	MANGO	MANGO-13A
	Measurements of			
	hydrogen peroxide			
	and formaldehyde			
	concentrations over			
	Toyama Prefecture	Koichi		
756	in central Japan	Watanabe	MANGO	MANGO-14B
	Formation and			
	impacts of gaseous			
	nitrated phenols at			
	Hok Tsui during			
	autumn and winter	N// 01/51		
/60	of 2018	YI CHEN	MANGO	MANGO-15C
	MEASUREMENT OF			
	BLACK CARBON			
010	DAVISTAN	Noor Abroad	MANCO	
818	PARISTAN	noor Anmad	IVIANGU	IVIAINGU-16A

	Geographic distribution of fluorescent bioaerosols and roles of marine biological particles			
	in the cloud			MANGO-17B
845	Arctic Ocean	Kaori Kawana	MANGO	
045	Development and	Raon Rawana		CATCH
	adaptation of			
	sensors and			
	samplers for			
	vertical profiling			
	using fixed-wing			
	drones in the			
	context of the			
	Cooperation to			
	Unravel the RolE of			
	Atmospheric			
	Aerosols over the			
	Amazonian Basin	Maximilien		
37	(CURE-3AB).	Desservettaz	MAP-AQ	MAPAQ-86B
	GEOS Simulations			
	of Dust Deposition			
	Allantic Ocean.			
	Dust Emissions			
	Compensated by			
68	Efficient Removals	Hongbin Yu	MAP-AQ	MAPAQ-87C
	How Does Indoor			
	Air Chemistry Affect			
	Outdoor Air	Freja		
86	Pollution?	Oesterstroem	MAP-AQ	MAPAQ-88A
	What's really in the			
	air? A season of			
	pollen counts with			
	novel real-time			
99	instruments	Fiona Tummon	MAP-AQ	MAPAQ-89B
	Development of an			
	Aerosol and Cloud			
	Analysis System in	Bighnaraj		
107	the Caribbean	Sarangi	MAP-AQ	MAPAQ-90C
	Development of a			
	MUlti-Scale			
	Infrastructure for			
	Chemistry and			
108	Aerosols – MUSICA	Louisa Emmons	MAP-AQ	MAPAQ-91A

	Linking land surface			
	conditions with			
	biogenic emissions,			
	dry deposition and			
	ozone in several			
128	latitude regions	Min Huang	MAP-AQ	MAPAQ-1A
	Chemical			
	characterization			
	and source			
	apportionment of			
	PM2.5 in two West			
	African cities			
	(Korhogo and			
	Abidjan in Cote	Sylvain		
138	d'Ivoire)	Gnamien	MAP-AQ	MAPAQ-2B
	PM2.5-bound			
	silicon-containing			
	secondary organic			
	aerosols (Si-SOA) in			
182	Beijing ambient air	Jingsha Xu	MAP-AQ	MAPAQ-3C
	Direct and indirect			
	effects of aerosols			
	on meteorology			
	and air pollutant			
	concentrations			
	during dry and wet			
	periods on			
225	Southeast Brazil	Sergio Espinosa	MAP-AQ	MAPAQ-4A
	The impact of large-			
	scale circulation on			
	daily PM2.5 in			
	major populated			
	regions of China			
239	during winter	Zixuan Jia	MAP-AQ	MAPAQ-5B
	Impact of aerosol			
	chemical			
	parameterization in			
	a regional chemical			
	transport model on			
	PM distribution			
246	over Thailand.	Sherin Bran	MAP-AQ	MAPAQ-6C

1		1	1	1 1
	Model evaluation of			
	Zeppelin and			
	surface			
	observations of			
	reactive			
	compounds in the			
	evolving			
	Atmospheric			
	Boundary Layor			
	Entrainment versus			
	other ABL sources	Laurens		
258	and sinks.	Ganzeveld	MAP-AQ	MAPAQ-7A
	The impact of			
	climate change on			
	winter haze over			
	the North China			
260				
268	Plain	Shipra Jain	MAP-AQ	IVIAPAQ-8B
	Association			
	hotwoon pollution			
	between ponution			
	sources of amplent			
	fine particulate and			
	the changes in			
	biomarkers of			
	oxidative stress and			
	inflammation: A			
	case study in urban			
273	Beijing in 2016	Vidan 7hang	ΜΔΡ-ΔΟ	ΜΔΡΔΟ-9C
275	Mountain vallov			
	would the winey			
	circulation in			
	Santiago, Chile:			
	consequences on			
	Black Carbon			
	deposition over			
	glaciers and Ozone			
	injection into the			
202	froo troposphoro	Pómy Lanoro	MARAO	MARAO 10A
202		кетту сареге	MAP-AQ	IVIAFAQ-10A
	ASSOCIATED WITH			
	ATMOSPHERIC FINE			
	PARTICULATE			
	MATTERS IN THE			
	TWO MOST			
204		Chi Mauruan		
304		Chinguyen	IVIAP-AQ	IVIAPAQ-11B

347	Towards high resolution air quality modeling using large eddy simulation: a case study for Eindhoven, the Netherlands	Ruud Janssen	ΜΑΡ-ΑΟ	MAPAO-12C
	Assessing nitrogen			
	dioxide intra-urban spatial variability in			
	the West African			
361	city of Dakar, Senegal	Aissatou Fave	MAP-AO	MAPAO-13A
	Investigation of the			
	atmospheric			
	fuel burning tracers			
	during a strong			
272	winter time particle			
3/3	Statistical and	Julien Kammer	IVIAP-AQ	IVIAPAQ-14b
	Machine Learning			
	Methods for			
	Evaluating			
	Reduction Policies			
	under Changing			
	Meteorological			
383	Conditions	Minghao Qiu	MAP-AQ	MAPAQ-15C
	Modelling changes			
	inorganic aerosol			
	formation and			
	nitrogen deposition			
204	in Europe from	Ion Fief Ionson		
594	2003 10 2030	Jan Elor Jonson	MAP-AQ	MAPAQ-10A
	Ultrafine Aerosol			
	Particles in Merida,	Joshua Muñoz-		
395	Yucatan (Mexico)	Salazar	MAP-AQ	MAPAQ-17B
	dispersion in			
	central and			
	southern Chile in			
	winter and summer			
400	2016	Kevin Basoa	MAP-AQ	MAPAQ-18C

	An Update on Low-			
	cost Sensors for the			
	Measurement of			
	Atmospheric			
401	Composition	Richard Peltier	MAP-AQ	MAPAQ-19A
	Increasing trends in			
	secondary aerosols			
	in Santiago:			
	empirical analysis			
	and modeling	Camilo		
405	approach	Menares	MAP-AQ	MAPAQ-20B
	Comparison of			
	ground-based			
	aerosol data,			
	satellite			
	observation and			
	dust forecast			
	models in African			
	dust and high			
	convective events			
	over the Greater	Josele Rosas		
425	Caribbean Basin	Nava	MAP-AQ	MAPAQ-21C
	Modeling the			
	combined impacts			
	of changing human			
	activity and a			
	changing climate on	Hannah		
446	air quality	Horowitz	MAP-AQ	MAPAQ-22A
	From Low-Cost			
	Sensors to High-			
	Quality Data: the			
	Importance of			
	Collocated			
	Calibration Model	Michael		
461	Development	Giordano	MAP-AQ	MAPAQ-23B
	Assessment of			
	Atmospheric			
	Particulate Matter			
	(PM2.5 and PM2.5-			
	10) and Source			
	Apportionment in			
	Kenitre City			
470	Kenitra City,	Mounio TALIDI		
470		IVIOUNIA TAHRI	WIAP-AQ	IVIAPAQ-24C
	Formaldenyde			
	column density as			
	an indicator for			
~~~	elevated surface	ا میں اور ا		
4//	02011e	Laura Juda	IVIAP-AQ	IVIAPAQ-25A

487	Combining light- absorption observation and source-oriented modelling for characterization and source apportionment of black carbon aerosol pollution in a typical Mediterranean coastal area	Andrea Milinković	MAP-AQ	MAPAQ-26B
402	Diagnosis and prognosis of air quality in South Korea using the	Taoguung Loo	MARIAO	MARAO 276
538	Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmospheric Suspended Particulate Matter from Fertilizer Industries in Bangladesh	Snigdha Aziz	ΜΑΡ-ΔΟ	ΜΔΡΔΩ-28Δ
539	Effect of Global Atmospheric Datasets in Modeling Meteorology and Air Quality in the Andean Region of Ecuador	René Parra	MAP-AQ	MAPAQ-29B
542	Efficient vertical transport of black carbon in the planetary boundary layer	Kang Hu	MAP-AQ	MAPAQ-30C
550	Quality Assurance in the WMO-Global Atmosphere Watch (GAW) Program: A New Expert Team on Measurement Quality for More Standardization and Evaluation	Herman Smit	MAP-AQ	MAPAQ-31A

	Sensitivity of Air			
	Pollution in Quebec			
	to Regional	Dahin Stovana		
222	Emissions Quantifying Linear	Robin Stevens	MAP-AQ	MAPAQ-32B
	and Non-Linear			
	Aerosol Precursor			
	Emissions on			
	Pollutant			
	Concentrations			
558	Using CMAQ-hyd	Jiachen Liu	MAP-AQ	MAPAQ-33C
	The influence of			
	chemical			
	compositions to the			
	sensitivity of			
	visibility on the			
550	PM2.5 and relative	line Manne		
559	numiaity	Jiao wang	MAP-AQ	MAPAQ-34A
	Constructing a			
	spatiotemporally			
	concentration			
	dataset over China			
	during 1980–2019			
	using a machine			
574	learning approach	Huimin Li	MAP-AQ	MAPAQ-35B
	Contribution of			
	brown carbon to			
	the light absorption			
	and radiative effect			
	of carbonaceous			
	aerosols from			
	biomass burning			
504	emissions in Chiang			
594	Air Quality	Ying Zhang	MAP-AQ	MAPAQ-36C
	Air Quality Modeling with			
	Urban WRE-Chem			
	system over a high			
	altitude tropical			
	City:			
	, Implementation	J. Miguel		
622	and evaluation.	Poblete	MAP-AQ	MAPAQ-37A

		Trace Elements			
		From Ocean-Going			
		Vessels in East			
		Asia:Vanadium and			
		Nickel Emissions			
		and Their Impacts			
	640	on Air Quality	Junri Zhao	MAP-AQ	MAPAQ-38B
		Insights into future			
		spatial and			
		temporal variability			
		of PM2.5 and O3 in			
		Xiamen, South			
	649	China	Qixian Liu	MAP-AQ	MAPAQ-39C
		Modelling the			
		impact of urban			
		traffic management			
		strategies on			
		emissions and air			
		quality levels in	Daniel		
	650	Barcelona (Spain)	Rodriguez-Rey	MAP-AQ	MAPAQ-40A
		A cross-model			
		examination of the			
		impact of			
		orography and			
		model resolution			
		on pollutant	Alexandros		
	651	transport	Poulidis	MAP-AQ	MAPAQ-41B
		RWANDA AIR			
		POLLUTION			
	650	ASSESSMENT AND	HABINEZA		
	652	FORECASTING.	THEOBARD	MAP-AQ	MAPAQ-42C
		Characteristics and			
		Source			
		Apportionment of			
		Trace Metals In			
		PIVILUANO PIVIZ.5 at			
	<b>CEE</b>	a franc Site in	Surat Dowan		
	000	Agid, Illuid.	Sulat Dewall	MAP-AQ	MAPAQ-43A
		to improve source			
		comprove source			
		apportionment in			
		Combination and			
		cross validation of			
		traditional (EPA			
		DME) and new			
		(Multi-Isotonic			
		(indernrint)	Carlos Souto-		
	665	models.	Oliveira	MAP-AO	MAPAO-44B
l	000				

	The study of			
	atmospheric nitrous			
	acid in the North			
671	China Plain	Wenqian Zhang	MAP-AQ	MAPAQ-45C
	An Overview of			
	long-term			
	monitoring efforts			
	of Persistent			
	Organic Pollutants			
	and pesticides in			
680	Africa	John Mwangi	MAP-AQ	MAPAQ-46A
	Modeling diurnal			
	variation of surface			
	PM2.5			
	concentrations over			
	East China with			
	WRF-Chem:			
	impacts from			
	boundary-layer			
	mixing and			
	anthropogenic			
687	emission	Qiuyan Du	MAP-AQ	MAPAQ-47B
	Uncertainties			
	propagated from			
	optical properties in			
	derusur			
699	schomos	Arial Scagliatti		
088	Evaluating the	Anerscagnotti	MAF-AQ	MAFAQ-48C
	impact of dust			
	events on Cloud			
	Condensation			
	Nuclei (CCN) and			
	Aerosol Load levels			
	over the Fast			
	Mediterranean			
	using satellite	Maria		
693	observations	Sfakianaki	MAP-AQ	MAPAQ-49A
	Assessing the role			
	on two			
	anthropogenic			
	emission			
	inventories on the			
	outcomes of air			
	quality simulations			
	for the			
	metropolitan area	Melisa Diaz		
697	of Buenos Aires	Resquin	MAP-AQ	MAPAQ-50B

	MAIAC algorithm calibration uncertainties for			
	sites with low AOD			
	values. Case study:	locofina		
698	of Buenos Aires	Urguiza	MAP-AQ	MAPAQ-51C
	Importance of	•		
	model complexity			
	ambient air quality			
	and the resulting			
707	health impacts	Forrest Lacey	MAP-AQ	MAPAQ-52A
	automated algorithm for			
	estimation using			
	stacked machine			
/2/	learning	Kyle Shores	MAP-AQ	MAPAQ-53B
	Aerosol Optical Depth, decadal (2007-2018) scenario over four megacities of India: An Assessment using Gridded			
	MODIS Satellite	Priyanshu		
737	Observations	Gupta	MAP-AQ	MAPAQ-54C
	of particulate matters in a research vessel: indoor concentrations and			
741	size distributions	wu xudong	MAP-AQ	MAPAQ-55A
	Characterization, oxidative potential (OP) and health risk analysis of PM2.5 bound trace metals during foggy and non-foggy episodes at a site in the Indo-			
743	Gangetic Plain	Isha Goyal	MAP-AQ	MAPAQ-56B

	Characteristics of Volatile Organic Compounds over Hong Kong Waters			
	Measurement			
	Campaign During			
753	Ozone Episode	Ho Wun Lee	MAP-AQ	MAPAQ-57C
	The aggravated			
	short-term PM2.5-			
	due to atmospheric			
	transport in the			
765	Yangtze River Delta	Peng Wang	MAP-AQ	MAPAQ-58A
	Long-term fog			
	variation and its			
760	impact factors over	Shuqi Van		
769			MAP-AQ	IVIAP-AQ596
	A new air quality			
	index to measure			
	the impact of urban			
	trees on air quality,			
	human health and			
770	secondary pollutant	Savita Datta		
//8	Snatial hias-	Savila Dalla	MAP-AQ	MAPAQ-00C
	correction method			
	for street-scale air			
781	quality models	Jan Armengol	MAP-AQ	MAPAQ-61A
	Simultaneous			
	observations of			
	NO2 and HCHO			
	from three	Mriganka		
784	in India	Riswas	ΜΔΡ-ΔΟ	ΜΔΡΔΟ-62Β
704	Predicting future	Diswas		MAI AQ 020
	changes of soil			
	selenium based on			
	Se atmospheric			
789	deposition.	Yutao Chen	MAP-AQ	MAPAQ-63C
	Simulated fine			
	particulate air			
	attributable to coal-			
	fired power in the	Patricia-Ann		
790	Highveld	van der Walt	MAP-AQ	MAPAQ-64A

	Mixing Height Simulations over			
	Valley Atmosphere			
	in Northern	Ronald		
792	Thailand	Macatangay	MAP-AQ	MAPAQ-65B
	Decision support			
	system for air-			
	quality			
	Delbi and the	Gauray		
800	surrounding region	Govardhan	MAP-AO	MAPAO-66C
	Fog-forecast over			
	the northern region			
	of India employing	Gaurav		
801	realistic aerosol	Govardhan	MAP-AQ	MAPAQ-67A
	Biogenic Volatile			
	Organic			
	(BVOCs) and roles			
	on Air Quality			
	(Ozone and PM2.5)			
	over Northern	Vanisa		
805	Thailand	Surapipith	MAP-AQ	MAPAQ-68B
	Rainwater			
	Chemistry during			
	the			
	GoAmazon2014/5:			
	influence of			
	hiogenic hiomass			
	burning and urban			
	pollution on the			
	compostion of			
	precipitation in	Theotonio		
806	Central Amazonia	Pauliquevis	MAP-AQ	MAPAQ-69C
	Development of a			
	regional air quality			
	reanalysis over the			
207	contiguous United	Deiech Kumer		
807	States Forecasting of	Rajesh Kumar	MAP-AQ	MAPAQ-70A
	PM2 5			
	Concentration			
	under Climate			
	Change over	Angkhana		
808	Thailand	Ketjalan	MAP-AQ	MAPAQ-71B

	Levels of PM2.5 in			
	Great Mendoza			
	(Argentina) and its			
810	impact on bicyclists	Maria Tames	MAP-AQ	MAPAQ-72C
	Effects of Land Use			
	and Land Cover			
	pattern on			
	Meteorology and			
	Air Quality over			
813	Delhi	Preeti Gunwani	MAP-AQ	MAPAQ-73A
	Modeling			
	secondary organic			
	aerosol formation			
	from volatile			
	chemical products	Elyse		
816	in Los Angeles	Pennington	MAP-AQ	MAPAQ-74B
	Understanding NO2			
	concentrations on			
	the South African			
	Highveld using a			
	ground-based			
817	monitoring system	Refilwe Kai	MAP-AO	MAPAO-75C
	Understanding			
	aerosol			
	composition in an			
	inter-Andean valley			
	impacted by			
	sugarcane-			
	intensive			
	agriculture and			
824	urban emissions.	Angela Vargas	MAP-AQ	MAPAQ-76A
	THE DIURNAL			
	EVOLUTION OF AIR			
	POLLUTANTS IN			
	NAIROBI CITY,	Constance		
826	KENYA	Okuku	MAP-AQ	MAPAQ-77B
	EC/OC content in			
	PM2.5 in five Latin			
	American cities and			
	megacities: air			
	quality and	Julian Gelman		
827	radiative forcing	Constantin	MAP-AQ	MAPAQ-78C
	Experimental air			
	quality forecasting			
	with the Rapid-			
	Refresh model			
	coupled to			
	cnemistry (RAP-			
829	Chem)	Jordan Schnell	MAP-AQ	MAPAQ-79A
	Size-segregated			
-----	-----------------------	----------------	--------	-----------
	ions and			
	carbonaceous			
	fractions of			
	ambient aerosol in			
831	Bogotá	Lady Mateus	MAP-AQ	MAPAQ-80B
	Effects of grid			
	resolution on urban			
	air quality			
	simulation with	<u> </u>		
832	MUSICAVU	Duseong Jo	MAP-AQ	MAPAQ-81C
	Impact of air quality			
	management			
	programs on non-			
	criteria and criteria			
	primary			
	atmospheric			
	Motropolitan Zono	Omar Amador		
833	of Mexico Valley		MAP-AO	MARAO-82A
855	Air quality modeling	INITIO2		
	with WRF-Chem /			
	DART system for	Evelyn		
850	Central Mexico	Martinez	MAP-AQ	MAPAQ-83B
	The AQ-WATCH			
	Project - Worldwide			
	Analysis and			
	Forecasting of			
	Atmospheric			
	Composition for			
852	Health	Yvonne Boose	MAP-AQ	MAPAQ-84C
	Stable and			
	transport indices			
	applied to winter			
	air pollution over			
050	the Yangtze River	Viachui Liu		
833			MAF-AQ	MAPAQ-83A
	RADIATIVE			
	FORCING OVER THE			
121	ARCTIC	Ulas Im	PACES	PACES-1A
	Isotopic			
	composition of			
	atmospheric nitrate			
	in Fairbanks,			
	Alaska: results from			
	the pre-ALPACA			
126	campaign 2019	Sarah Albertin	PACES	PACES-2B

	Ozone and carbon			
	monoxide			
	observations over			
	open oceans on R/V			
	Mirai from 67° S to			
	75° N during 2012			
	to 2017: Testing			
	global chemical			
	reanalysis TCR-2 in			
	terms of Arctic			
	processes and low			
120	ozone levels at low	Vuga Kanava	DACES	
129		Yugo Kanaya	PACES	PACES-3C
	wkr-chem			
	oircraft data with			
	BC omissions from			
	BC Emissions nom			
	flarings evaluated			
372	by satellite data		PACES	PACES-4A
0,2	Model simulations			
	of short-lived			
	climate forcers in			
462	the Arctic	Cynthia Whaley	PACES	PACES-5B
	Modelling Air			
	Quality in the Arctic			
	and Northern			
	Latitudes: An			
	assessment of	Stephen		
496	surface ozone.	Beagley	PACES	PACES-6C
	Source attribution			
	of Arctic black			
	carbon and sulfate			
	aerosols and			
	associated Arctic			
	surface warming			
576	during 1980–2018	Lili Ren	PACES	PACES-7A
	Can a global			
	model reproduce			
	interannual			
	variabilitios and			
	tronds			
	ofdenositions of			
	sulfate nitrate and			
	ammonium			
	preserved in the			
	SoutheasternGreen			
609	and Dome ice core?	Kengo Sudo	PACES	PACES-8B

	Modelling			
	Chemistry and			
	Vertical Transport			
623	in Fairbanks, Alaska	Sarah Johnson	PACES	PACES-9C
	Extreme Wildfire			
	Enhancements of			
	СНЗОН, НСООН,			
	and PAN over the	Tyler		
690	Arctic	Wizenberg	PACES	PACES-10A
	Size-Resolved			
	Elemental Analysis			
	Mineral Dust			
	Aerosol in Kluane			
700	National Park,		DACEC	
729	Yukon Evaluating air	Arnold Downey	PACES	PACES-11B
	quality and			
	atmosphere			
	composition			
	wildfires in the			
	summers of 2019	Mark		
730	and 2020	Parrington	PACES	PACES-12C
	based temperature			
	inversions are			
	related to			
	differences in			
	and ozone on a 20			
	m vertical scale in	Meeta Cesler-		
744	Alaska Source and	Maloney	PACES	PACES-13A
	variability of			
	formaldehyde			
	(HCHO) vertical			
	northern high			
	latitude: an			
	integrated satellite,			
	and model			
764	perspective	Tianlang Zhao	PACES	PACES-14B

	Wintertime			
	anthropogenic			
	Arctic Air Pollution	Eleftherios		
774	over Alaska	Ioannidis	PACES	PACES-15C
	Development of a			
	regional airshed			
	chemical transport			
	model for priority			
	airsheds in Western		Southern Hemispheres Working	
31	Australia	Sean Lam	Group	SH-1A
	Particulate matter		·	
	mass concentration			
	in different size			
	fractions related to			
	meteorological			
	variables in the			
	Metropolitan Area		Southern Hemispheres Working	
109	of São Paulo	Victória Peli	Group	SH-2B
	Temperature			
	response			
	measurements			
	from eucalypts give			
	insight into the			
	impact of Australian			
	isoprene emissions			
	on air quality in	Kathryn	Southern Hemispheres Working	
111	2050	Emmerson	Group	SH-3C
	Identifying the			
	factors driving the			
	Biogenic VOC			
	uncertainty in CTM			
	models in south-	Jhonathan	Southern Hemispheres Working	
251	east Australia.	Ramirez	Group	SH-4A
	Dust emissions			
	modelling over the			
	semi-arid			
	Argentinian		Southern Hemispheres Working	
366	territory	Ramiro Espada	Group	SH-5B
	Quantification and			
	characterization of			
200	PIVI2.5 in Buenos	S. 1. 1. 1. 1. 1.	Southern Hemispheres Working	
380	Aires, Argentina.	Pablo Lichtig	Group	SH-6C
	BIACK Carbon			
	atmospheric			
	biomass burning in			
	the America			
	roaching the			
	Chilean Control		Southern Hemisphoros Working	
103	Andes: evidence	Maria Ruggeri	Group	SH-74
-05	/ macs. cylachice	initia nuggen	Group	

1	from a multi-			l
	toohnical annraach			
	technical approach			
	An Overview of the			
	COALA-2020			
	campaign at			
	Cataract			
	(Characterising			
	Organics and			
	Acrosol Londing in	Clara Murahy	Southorn Homisphoros Working	
427	Aerosor Loauring in			CU 00
427	Australia)	(Paton-waish)	Group	SH-8R
	Mass spectrometry			
	system (MALDI-			
	TOF) validation in			
	the identification of			
	Aspergillus Nigri			
	Section species of			
	atmospheric air			
	from São Paulo	Valter Duo	Southern Hemispheres Working	
101				
404	Brazil.	FIINO	Group	3H-9C
	Intercontinental Air			
	Pollution Transport			
	in the Southern		Southern Hemispheres Working	
489	Hemisphere	Lily Sheridan	Group	SH-10A
	Radon Dosimetry in			
	Nchanga			
	Underground Mine			
	on The Connerbolt		Southorn Homisphoros Working	
F11				
511	Province	BANDA	Group	2H-11B
	Can we see the			
	impact of			
	indigenous fire			
	management on			
	the interannual			
	variability of carbon	Shyno Susan	Southern Hemispheres Working	
561	monoxide?	lohn	Group	SH-12C
	Prediction of			
	Aerosol acidity in			
	the remote marine			
	houndary layor of			
	the couthern econ		Couthorn Homispheres Marting	
	ine southern ocean			SU 434
602	during summer.	Sive Xokashe	Group	SH-13A

	Southern Ocean			
	of Cloud			
	Condensation	Ruhi	Southern Hemispheres Working	
636	Nuclei	Humphries	Group	SH-14B
	Mapping the			
	sources of organic			
	PM1: A case study			
	from the COALA			
	campaign in	Adhitya	Southern Hemispheres Working	
643	Southeast Australia	Sutresna	Group	SH-15C
	Using Climate			
	Mode Indices to			
	Forecast Carbon			
	Monoxide			
	Variability in Fire-			
	Prone Southern			
740	Hemisphere	Million Deviale	Southern Hemispheres Working	<u>CU 4 C A</u>
/48	Regions	william Daniels	Group	SH-16A
	Biomass burning			
	smoke and			
	vapor over the			
	southeast Atlantic			
	stratocumulus			
	region: results from			
	observations and		Southern Hemispheres Working	
751	models	Kristina Pistone	Group	SH-17B
	AVOC and BVOC			
	sensitivity study for			
	ozone pollution in			
	Santiago, Chile			
	combining			
	observations and a	Constanza	Southern Hemispheres Working	
815	box model	Urbina	Group	SH-18C
	Update of			
	Tropospheric Ozone			
0.00	trends at Ushuaia		Southern Hemispheres Working	SUL 404
836	GAW Station	Pablo Medina	Group	SH-19A
	ine influence of			
	corbon monovido			
	São Paulo city: An			
	observation from	Gregori	Southern Hemispheres Working	
843	lidar data	Moreira	Group	SH-20B

	Anthropogenic air			
	pollutant emission			
	inventories for	Nicolas	Southern Hemispheres Working	
844	South America	Huneeus	Group	SH-21C
	Ozone production			TOAR-1A
	in African biomass			NOTE:
46	burning	James Lee	TOAR-II	Withdrawn
	Reactive Uptake of			
	Ozone to Simulated			
	Seawater: Factors			
	Affecting Uptake			
	and lodine	Stephanie		
91	Formation	Schneider	TOAR-II	TOAR-2B
	The TOAR-II			
	Satellite Ozone			
	Focus Working			
105	Group	Helen Worden	TOAR-II	TOAR-3C
	Trends of surface			
	ozone and its			
	precursors over 20			
	years in Southern	Dagmar		
141	Germany	Kubistin	TOAR-II	TOAR-4A
	Links between			
	oceanic ozone			
	uptake and			
	biogenic organic			
	matter found in the			
	sea surface	Katherine		
155	microlayer	Weddell	TOAR-II	TOAR-5B
	Productions of			
	gaseous isoprene,			
	acetone, and			
	acetaldehyde from			
	reactions between			
	ozone and			
176	seawater.	Daniel Phillips	TOAR-II	TOAR-6C
	Harmonised			
	assessment of			
	tropospheric ozone			
	data records from			
	multiple satellites			
	with the			
	ozonesonde global			
209	network	Arno Keppens	TOAR-II	TOAR-7A
	Large contribution			
	of biomass burning			
	emissions to ozone			
	throughout the			
	global remote			7040.05
218	troposphere	liann Bourgeois	I UAK-II	IUAK-8B

1.0					
		(Global) direct and			
		in-direct effects of			
		heat-stressed	T		
	253	vegetation on	Tamara		
	233	Oxidation of low-	Lininericiis		TOAN-SC
		molecular weight			
		organic compounds			
		in cloud droplets:			
		global impact on			
		tropospheric			
		oxidants and other			
	290	trace gases	Simon Rosanka	TOAR-II	TOAR-10A
		Recent Chinese			
		ozone trends as			
		seen from space			
		and models:			
		impact from local			
		nrecursor emissions			
	298	reductions	Gaëlle Dufour	TOAR-II	TOAR-11B
		New tropospheric			
		ozone dataset from			
		OMPS/NPP and the			
		detection of			
		enhanced			
		tropospheric ozone			
		above South	Andrea		
	214	American	Ortanoz-	TOAD II	TO AD 120
	314	megacities	Cneuquelar	TUAR-II	TUAR-12C
		impacts of C1_C3			
		alkyl nitrate			
		chemistry and			
		emissions on	Maria		
	320	tropospheric ozone	Zamyatina	TOAR-II	TOAR-13A
		Long-term trends in			
		troposperic ozone			
		at the Cape Verde			
ļ		Atmospheric	Matthew		
	355	Observatory	Rowlinson	TOAR-II	TOAR-14B
		Vegetation			
		feedbacks during			
ļ		drought exacerbate			
ļ		ozone air pollution			
	362	extremes in Europe	Meiyun Lin	TOAR-II	TOAR-15C

	Contributions of World Regions to the Global			
367	Tropospheric Ozone Burden Change From 1980 to 2010	Yugiang Zhang	TOAR-II	TOAR-16A
	Global Surface Ozone Concentration Mapping Through Data Fusion at Fine Resolution for 1990 to 2017 to Support Health Impact			
414	Assessment	Jason West	TOAR-II	TOAR-17B
	The TOAR-II Ozone and its Precursors in the Tropics Focus Working Group's			
442	activities	Audrey Gaudel	TOAR-II	TOAR-18C
	and modelling study of ozone enhancement in NOx-saturated megacity during the 2018 summer heat			
458	wave	Junsu Gil	TOAR-II	TOAR-19A
467	Lower than expected summertime clean- background ozone concentrations derived from ozone precursor relationships in the Southeast United States	Qiyang Yan	TOAR-II	TOAR-20B
	Night-time Ozone	2.70.18.10.1		
	Chemistry and Influence of Meteorological Parameters at a ground level site in			
468	Delhi, India	Pallavi Saxena	TOAR-II	TOAR-21C
504	TOAR-II Chemical Reanalysis Focus Working Group	Kazuyuki Miyazaki	TOAR-II	TOAR-22

	Trends of Surface and Tropospheric Ozone over Southeast Asia and their drivers during			
509	2005 to 2014	Xiaolin Wang	TOAR-II	TOAR-23B
535	Current organizational and research plans of the TOAR-II Statistics Focus Working Group	Kai-Lan Chang	TOAR-II	TOAR-24C
571	Improved high- quality data of volatile organic compounds thanks to metrological developments	Céline Pascale	TOAR-II	τοαβ-254
5/1	Highlights from a			TOAN 23A
580	multi annual observation of ozone deposition in a deciduous mature forest in Italy	Giacomo Gerosa	TOAR-II	TOAR-26
	The TOAR			
	database: data			
	harmonization and			
	quality assurance			
584	data	Niklas Selke	TOAR-II	TOAR-27C
	Harmonization and Evaluation of Ground-based Instruments for Free-Tropospheric Ozone Measurements by TOAR-II Focus Working Group	Roeland Van		
601	"HEGIFTOM"	Malderen	TOAR-II	TOAR-28A
606	Long-term measurements of tropospheric ozone and precursors (HCHO and CO) from the NDACC FTIR ground-based network	Corinne Vigouroux	TOAR-II	TOAR-29B

		TOAR-II			
		Tropospheric Ozone			
		Precursors (TOP)-			
		Focus Working			
		Group:			
		Photochemical			
		ozone formation			
		and free radical			
		chemistry in five			
		Chinese megacities			
	607	in summer 2018	Xufei I II I	TOAR-II	TOAR-30C
	007		Xulei Elo		TOAN SOC
		Tronosnheric Ozone			
		Precursors (TOP) –			
		Focus Working			
		Group: Evaluating			
		the Regional and			
		Global Distributions			
		of Ozone			
		Precursors in	Yasin		
	624	relation to Ozone	Flshorbany	TOAR-II	TOAR-31A
	02.	Distribution and	,		
		seasonal variability			
		of ozone and			
		carbon monoxide			
		over the tropics			
		with 20 years of			
	628	measurements	Maria Tsivlidou	TOAR-II	TOAR-32B
ľ		Characteristics and			
		source analysis of			
		in Oinghoi Tibot			
	<b>C</b> 20		Changhan Vu		
	038	Plateau	Chenghao Xu	TOAR-II	TUAK-33C
		High ozone over the			
		bread basket of			
		India ramped up by			
		isoprene and			
	647	acetaldehyde	Vinod Kumar	TOAR-II	TOAR-34A
		The TOAR-II Ozone			
		Radiative Forcing			
		(ORF) Working			
	656	Group activities	Fiona O'Connor	TOAR-II	TOAR-35B

		Surface ozone			
		concentrations			
		response to current			
		air pollution			
		mitigation			
		strategies in			
		Chinese megacity			
	679	agglomerations	Yijuan Zhang	TOAR-II	TOAR-36C
		Implementation of			
		a New Value of the			
		Ozone Absorption			
		Cross-section per			
		IVIOIECUle at 253.65			
		Atmospheric Ozono			
	696	Atmospheric Ozone	Daul Prowor		
	000	Effect of global and	Paul brewer	TOAR-II	TUAR-37A
		local biogonic			
		emission			
		inventories in			
		surface ozone			
		simulations using	Feline		
	689	WRF-Chem	Cifuentes	TOAR-II	TOAR-38B
ľ		Observations of			
		light NMHCs over			
		the central			
		Himalayas:			
		Assessment of			
		ozone production			
		potential using a			
		photochemical box	Mahendar		
	691	model	Rajwar	TOAR-II	TOAR-39C
		Multimodel			
		evaluation of			
		present-day and			
		climate-driven			
		changes in surface			
		ozone over Africa			
	696	and South America	Florence Brown	TOAR-II	TOAR-40A
ļ		TOAR-II			
ļ		Tropospheric Ozone			
ļ		Precursors (TOP) –			
ļ		FOCUS WORKING			
		Group: Addressing			
ļ		multi-scale			
ļ	715	America	Rodrigo Seguel		
ļ	112	America	Noungo Seguel		

	Evaluation of tropospheric ozone measurements derived from the	Natalya		
732	satellite UV sensors	Kramarova	TOAR-II	TOAR-42C
	Impact of the 2020 Colorado wildfires on Ozone in the	Patricia Razafindrambin		
739	Front Range	ina	TOAR-II	TOAR-43A
	Ozone Chemistry over a Western			
766	Himalayan Site	Renu Masiwal	TOAR-II	TOAR-44B
	Investigating the			
	governing			
	processes and			
	synergic effect			
	between			
	anthropogenic and			
	biogenic emissions			
	on ozone pollution			
770	over nortnern	Foifen Van		TOAD AFC
	Clillid Estimation of			IUAK-43C
	Constantion of			
	lightning event in			
	nginning event III			
812	season	Swagata Pavra	TOAR-II	TOAR-46A